1
|
Zhu J, Wang F, Chen J, Liu C. An efficient biosensor using a functionalized microneedle of Cu 2O-based CoCu-LDH for glucose detection. RSC Adv 2023; 13:32558-32566. [PMID: 37936640 PMCID: PMC10626343 DOI: 10.1039/d3ra05957j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Glucose detection with small and micro volume sampling has recently received increasing attention in monitoring personal health. Herein, a cauliflower-type cluster of Cu2O nanoparticles (NPs) was directly deposited on the tip surface of a stainless steel acupuncture needle electrode (ANE) by electrochemical deposition, and then this pre-formed cuprous basis was used to further prepare the neatly arranged CoCu-layered double hydroxide (CoCu-LDH) nanosheets that interconnected to form nano-sized pores in the range from 100 to 500 nm. The microstructure and spectral characteristics of the surface modification materials were comprehensively characterized by FE-SEM, EDS, XRD, FT-IR and TEM. Cu2O-based CoCu-LDH composites with special morphology had been proven to accelerate the rate of electron transport and provide more available active centers, and moreover, the mixed valence of Cu/Co induced an excellent synergism for the electrocatalytic oxidation of glucose. As a result, CoCu-LDH/Cu2O/ANE as a sensitive glucose probe exhibited two wider linear ranges of 0.03-0.40 mM and 0.40-6.00 mM, with sensitivities of 116.13 μA mM-1 and 52.08 μA mM-1, respectively, and the detection limit as low as 0.46 μM (S/N = 3). The response time only took 3 s and it kept working stably in the interference of ascorbic acid (AA), dopamine (DA), uric acid (UA), and Cl-. In the stability test, the CoCu-LDH/Cu2O/ANE sensor exhibited a stable monitoring sensitivity after 15 days. Finally, the CoCu-LDH/Cu2O/ANE sensor had been successfully applied to glucose analysis in human serum, proving that our design was an attractive strategy for developing a portable, minimally invasive, and low-cost non-enzymatic electrochemical glucose sensing platform.
Collapse
Affiliation(s)
- Jialei Zhu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Fuqin Wang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Jiaying Chen
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Chang Liu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| |
Collapse
|
2
|
Qamar MA, Javed M, Shahid S, Shariq M, Fadhali MM, Ali SK, Khan MS. Synthesis and applications of graphitic carbon nitride (g-C 3N 4) based membranes for wastewater treatment: A critical review. Heliyon 2023; 9:e12685. [PMID: 36660457 PMCID: PMC9842699 DOI: 10.1016/j.heliyon.2022.e12685] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.
Collapse
Affiliation(s)
- Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan,Corresponding author.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammed M. Fadhali
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia,Department of Physics, Faculty of Science, Ibb University, Ibb, 70270, Yemen
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd. Shakir Khan
- Department of Physics, College of Science, Al- Zulfi, Majmaah University, Al- Majmaah, 11952, Saudi Arabia
| |
Collapse
|
3
|
ZIF-8 derived carbon with confined sub-nanometer pores for electrochemically selective separation of chloride ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cheng Y, Wang J, Luo J, An X, Wang P, Ma X, Du X, Hao X. BiOI with Inherent Photo/Electric Biactivity Recovery I – by Novel Photoassisted Electrochemically Switched Ion Exchange Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yijia Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jie Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jinhua Luo
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Peifen Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xuli Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
5
|
Zhang X, Wang J, Zhang Z, Du X, Gao F, Hao X, Abudula A, Guan G, Liu Z, Li J. Modelling of pseudocapacitive ion adsorption of electrochemically switched ion exchange based on electroactive site concentration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Khorshidi M, Asadpour S, Sarmast N, Dinari M. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Jiang M, Zhang X, Du X, An X, Gao F, Hao X, Guan G, Liu Z, Li J, Abudula A. An electrochemically induced dual-site adsorption composite film of Ni-MOF derivative/NiCo LDH for selective bromide-ion extraction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Wang T, Yan L, He Y, Alhassan SI, Gang H, Wu B, Jin L, Wang H. Application of polypyrrole-based adsorbents in the removal of fluoride: a review. RSC Adv 2022. [DOI: 10.1039/d1ra08496h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When fluoride levels in water exceed permitted limits (>1.5 mg L−1), water pollution becomes a major concern to humans.
Collapse
Affiliation(s)
- Ting Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha, China
| | | | - Haiyin Gang
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Linfeng Jin
- School of Material Science and Engineering, Central South University, Changsha, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, China
| |
Collapse
|
9
|
Zhang X, Guo Y, Xie N, Guo R, Wang Y, Hu ZN, Xu W, Ai Y, Gao J, Wang J, Liang Q, Niu D, Sun HB, Qi Y. Ternary NiFeMnOx compounds for adsorption of antimony and subsequent application in energy storage to avoid secondary pollution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Zn–Al Layered Double Hydroxides Synthesized on Aluminum Foams for Fluoride Removal from Water. Processes (Basel) 2021. [DOI: 10.3390/pr9122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluoride excess in water represents an environmental issue and a risk for human health since it can cause several diseases, such as fluorosis, osteoporosis, and damage of the nervous system. Layered double hydroxides (LDHs) can be exploited to remove this contaminant from water by taking advantage of their high ion-exchange capability. LDHs are generally mixed with polluted water in the form of powders, which then cause the problem of uneasy separation of the contaminated LDH sludge from the purified liquid. In this work, Zn–Al LDH films were directly grown in situ on aluminum foams that acted both as the reactant and substrate. This method enabled the removal of fluoride ions by simple immersion, with ensuing withdrawal of the foam from the de-contaminated water. Different LDH synthesis methods and aluminum foam types were investigated to improve the adsorption process. The contact time, initial fluoride concentration, adsorbent dosage, and pH were studied as the parameters that affect the fluoride adsorption capacity and efficiency. The highest absorption efficiency of approximately 70% was obtained by using two separate growth methods after four hours, and it effectively reduced the fluoride concentration from 3 mg/L to 1.1 mg/L, which is below the threshold value set by WHO for drinking water.
Collapse
|
11
|
Amer A, Sayed GH, Ramadan RM, Rabie AM, Negm NA, Farag AA, Mohammed EA. Assessment of 3-amino-1H-1,2,4-triazole modified layered double hydroxide in effective remediation of heavy metal ions from aqueous environment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Li X, Huang G, Chen X, Huang J, Li M, Yin J, Liang Y, Yao Y, Li Y. A review on graphitic carbon nitride (g-C 3N 4) based hybrid membranes for water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148462. [PMID: 34465053 DOI: 10.1016/j.scitotenv.2021.148462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 05/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) has gained enormous attention for water and wastewater treatment. Compared with g-C3N4 nanopowders, g-C3N4 based hybrid membranes have demonstrated great potential for its superior practicability. This review outlines the preparation and characterization of g-C3N4 based hybrid membranes and presents their representative applications in water and wastewater treatment (e.g., removal of organic dyes, phenolic compounds, pharmaceuticals, salt ions, heavy metals, and oils). Meanwhile, g-C3N4 based films for the removal of contaminants through photocatalytic degradation is also summarized. In addition, the corresponding mechanisms and relevant findings are discussed. Finally, the challenges and research needs in the future and application of g-C3N4 based hybrid membranes are highlighted.
Collapse
Affiliation(s)
- Xiang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guohe Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jing Huang
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengna Li
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Jianan Yin
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ying Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yao Yao
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yongping Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, China-Canada Center for Energy, Environment and Ecology Research, UR-BNU, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Gao F, Wang J, Jiang M, Du X, Ma X, Hao X, Yue X, Guan G. A novel unipolar pulsepotential oscillation system based on HKUST-1(C)@CoAl LDH film for selective separation of dodecyl sulfonate ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zhao S, Li Z, Wang H, Huang H, Xia C, Liang D, Yang J, Zhang Q, Meng Z. Effective removal and expedient recovery of As(V) and Cr(VI) from soil by layered double hydroxides coated waste textile. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective recovery of lithium ions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Luo J, Du X, Gao F, Kong H, Hao X, Abudula A, Guan G, Ma X, Tang B. An electrochemically switchable triiodide-ion-imprinted PPy membrane for highly selective recognition and continuous extraction of iodide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Wang J, Gao F, Du X, Ma X, Hao X, Ma W, Wang K, Guan G, Abudula A. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135288] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|