1
|
Wu W, Zhang H, Qiao Z, Cai X, Liao G, Lei T. Separation of binary and ternary oil/water mixtures from a highly hydrophobic metal mesh. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2264-2270. [PMID: 37966181 PMCID: wst_2023_341 DOI: 10.2166/wst.2023.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A highly hydrophobic metal mesh has great potential for its application in oil/water separation due to its special wettability. However, most current oil/water separation devices are simple with limited separation capacity. A separation device based on a highly hydrophobic metal mesh was constructed for different types of oil/water mixtures. Experimental results show that the device not only can be used for the continuous separation of binary oil/water mixtures of any density ratios but also can realize the simultaneous separation of heavy oil/water/light oil ternary mixtures. This achievement is meaningful for practical applications, which will gain great interest in the future.
Collapse
Affiliation(s)
- Weibin Wu
- School of Science, Jimei University, Xiamen 361021, China; These authors contributed equally to this work. E-mail:
| | - Hang Zhang
- School of Science, Jimei University, Xiamen 361021, China; These authors contributed equally to this work
| | - Zhuangzhuang Qiao
- School of Science, Jimei University, Xiamen 361021, China; These authors contributed equally to this work
| | - Xiaomei Cai
- School of Science, Jimei University, Xiamen 361021, China
| | - Guiling Liao
- School of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| | - Tingping Lei
- School of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
2
|
Preethi V, Nair S, Ramesh ST, Gandhimathi R. Exploration of the performance of iron-based superhydrophilic meshes for oil-water separation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:793-804. [PMID: 37458992 DOI: 10.1080/10934529.2023.2236534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
This study investigates the oil-water separation capability of iron-based superhydrophilic meshes. It also intends to provide an optimistic view of their potential for industrial application. Oil-water separation performance of the 150 mesh, 300 mesh, and 400 mesh is primarily examined by analyzing the efficiency and speediness of separation as well as the limit of oil intrusion using petroleum based oils. The superhydrophilic meshes are further applied for oil-water separation of locomotive wash effluent. The superhydrophilic meshes showed good oil-water separation behavior. The 300 mesh is observed to have superior separation performance. It is also tested to have good reusability and resistance in harsh conditions. The separation effectiveness of 94.7%, reduced turbidity of 21.8 NTU, and chemical oxygen demand of around 70 ppm, along with reasonable flux and intrusion pressure values of 73.28 Lm-2min-1 and 0.848 kPa, respectively, are noticed for the separation study conducted for locomotive wash effluent using the designated superhydrophilic mesh. This study hence as well demonstrates a prospective future of superhydrophilic mesh for practical utility.
Collapse
Affiliation(s)
- V Preethi
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Shradha Nair
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - S T Ramesh
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - R Gandhimathi
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
3
|
Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal. Polymers (Basel) 2023; 15:polym15061459. [PMID: 36987239 PMCID: PMC10052305 DOI: 10.3390/polym15061459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Particulate matter (PM) with a diameter of 0.3 µm is inhalable and brings great threats to human health. Traditional meltblown nonwovens used for air filtration need to be treated by high voltage corona charging, which has the problem of electrostatic dissipation and thus reduces the filtration efficiency. In this work, a kind of composite air-filter with high efficiency and low resistance was fabricated by alternating lamination of ultrathin electronspun nano-layer and melt-blown layer without corona charging treatment. The effects of fiber diameter, pore size, porosity, layer number, and weight on filtration performance were investigated. Meanwhile, the surface hydrophobicity, loading capacity, and storage stability of the composite filter were studied. The results indicate that the filters (18.5 gsm) laminated by 10 layers fiber-webs present excellent filtration efficiency (97.94%), low pressure drop (53.2 Pa), high quality factor (QF 0.073 Pa−1), and high dust holding capacity (9.72 g/m2) for NaCl aerosol particles. Increasing the layers and reducing individual layer weight can significantly improve filtration efficiency and reduce pressure drop of the filter. The filtration efficiency decayed slightly from 97.94% to 96.48% after 80 days storage. The alternate arrangement of ultra-thin nano and melt-blown layers constructed a layer-by-layer interception and collaborative filtering effect in the composite filter, realizing the high filtration efficiency and low resistance without high voltage corona charging. These results provided new insights for the application of nonwoven fabrics in air filtration.
Collapse
|
4
|
Xu Y, Zeng X, Qiu L, Yang F. 2D nanoneedle-like ZnO/SiO2 Janus membrane with asymmetric wettability for highly efficient separation of various oil/water mixtures. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Cheng Y, Wang W, Yu R, Liu S, Shi J, Shan M, Shi H, Xu Z, Deng H. Construction of ultra-stable polypropylene membrane by in-situ growth of nano-metal–organic frameworks for air filtration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Jin K, Zhao Y, Fan Z, Wang H, Zhao H, Huang X, Hou K, Yao C, Xie K, Cai Z. A facile and green route to fabricate fiber-reinforced membrane for removing oil from water and extracting water under slick oil. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125697. [PMID: 33823481 DOI: 10.1016/j.jhazmat.2021.125697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Except the good separation performance, the membranes used for oil-water mixture separation should be fabricated with as little wastewater produced as possible. Thus, we proposed a green tactic--water vapor induced phase inversion to prepare the high-strength and superhydrophilic/underwater superoleophobic nonwoven fabric-based cotton/PA6/PAN membranes which is based on the polymer/solvent/nonsolvent ternary system analysis. Differing from adding additives in polymer solution or coagulation bath, above proposed strategy has an "subtractive effect" with the advantages of constructing three-dimensional porous structure and greatly reducing the organic wastewater produced during preparation process. Moreover, the obtained cotton/PA6/PAN membranes exhibited unexpected performances for separating oil-in-water emulsions. An ultrahigh permeation flux of up to 478,000 L m-2 h-1 bar-1 with a separation efficiency of > 99.9% was obtained under the driving pressure of 1.6 KPa, which was one order of magnitude higher than the conventional separation membranes with similar properties. In addition, it is surprising that the cotton/PA6/PAN membranes can also extract water from the slick oil/water immiscible mixture. Therefore, it is expected that the cotton/PA6/PAN membranes can be used in practical oily wastewater purification.
Collapse
Affiliation(s)
- Kaili Jin
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Yaping Zhao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Zhuizhui Fan
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Helan Wang
- China National Inspection & Testing Centre for Ophthalmic Optic Glass & Enamel Products, Research Institute of Donghua University, Shanghai 201620, China
| | - Hong Zhao
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiqin Huang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Keru Hou
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Chengjian Yao
- College of Fashion and Textiles, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Kongliang Xie
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Zaisheng Cai
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
7
|
Hoang AT, Nguyen XP, Duong XQ, Huynh TT. Sorbent-based devices for the removal of spilled oil from water: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28876-28910. [PMID: 33846913 DOI: 10.1007/s11356-021-13775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Always, oil spills do cause serious and dire consequences for the environment, nature, and society that it consumes much time and socio-economic resources to overcome such consequences. Oil spills, hence, posed a big challenge in searching the advanced technologies and devices to recover spilled oil rapidly and efficiently. Indeed, sorbents have been found to play an extremely critical role in the spilled-oil remediation processes. Recently, a large number of various advanced sorbents and sorbent-based oil-collecting devices/technologies have been developed to enhance the oil-recovery capacity. Therefore, it is necessary to have a comprehensive assessment of the application of sorbent-based oil-collecting devices/technologies in recovering spilled oil. Due to this reason, this paper aims to provide a comprehensive review of the advanced technologies of the combination of sorbents and oil-collecting devices in the oil cleanup strategies. Two main oil-collecting devices such as booms and skimmers that could conjunct with sorbents were critically evaluated on the basis of the applicability and technological features, indicating that the capacity of oil spill recovery could achieve 90%. Moreover, oil-storage and oil-collecting devices were also completely mentioned. Last but not least, technical directions, concerns over the application of sorbents in oil recovery, and existing challenges relating to storage, transport, and disposal of used sorbents were discussed in detail. In the future, the automatic process of spilled oil recovery with the conjunction between advanced devices and environmentally friendly high-efficiency sorbents should be further investigated to minimize the environmental impacts, reduce the cost, as well as maximize the collected oil spill.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam.
| | - Xuan Phuong Nguyen
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Vietnam.
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Vietnam
| | - Thanh Tung Huynh
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Ielo I, Giacobello F, Sfameni S, Rando G, Galletta M, Trovato V, Rosace G, Plutino MR. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2733. [PMID: 34067241 PMCID: PMC8196899 DOI: 10.3390/ma14112733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
This review presents current literature on different nanocomposite coatings and surface finishing for textiles, and in particular this study has focused on smart materials, drug-delivery systems, industrial, antifouling and nano/ultrafiltration membrane coatings. Each of these nanostructured coatings shows interesting properties for different fields of application. In this review, particular attention is paid to the synthesis and the consequent physico-chemical characteristics of each coating and, therefore, to the different parameters that influence the substrate deposition process. Several techniques used in the characterization of these surface finishing coatings were also described. In this review the sol-gel method for preparing stimuli-responsive coatings as smart sensor materials is described; polymers and nanoparticles sensitive to pH, temperature, phase, light and biomolecules are also treated; nanomaterials based on phosphorus, borates, hydroxy carbonates and silicones are used and described as flame-retardant coatings; organic/inorganic hybrid sol-gel coatings for industrial applications are illustrated; carbon nanotubes, metallic oxides and polymers are employed for nano/ultrafiltration membranes and antifouling coatings. Research institutes and industries have collaborated in the advancement of nanotechnology by optimizing conversion processes of conventional materials into coatings with new functionalities for intelligent applications.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.)
| | - Maurilio Galletta
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (G.R.); (M.G.)
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy;
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine (BG), Italy;
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN–CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (S.S.)
| |
Collapse
|
9
|
Synthesis of Si-Based High-Efficiency and High-Durability Superhydrophilic-Underwater Superoleophobic Membrane of Oil-Water Separation. MATERIALS 2021; 14:ma14102628. [PMID: 34069760 PMCID: PMC8156734 DOI: 10.3390/ma14102628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Oil pollution is caused by the frequent discharge of contaminated industrial wastewater and accidental oil spills and is a severe environmental and health concern. Therefore, efficient materials and processes for effective oil–water separation are being developed. Herein, SiO2-Na2SiO3-coated stainless steel fibers (SSF) with underwater superoleophobic and low-adhesion properties were successfully prepared via a one-step hydrothermal process. The modified surfaces were characterized with scanning electron microscopy (SEM), and contact angle measurements to observe the surface morphology, confirm the successful incorporation of SiO2, and evaluate the wettability, as well as with X-ray diffraction (XRD). The results revealed that SiO2 nanoparticles were successfully grown on the stainless-steel fiber surface through the facile hydrothermal synthesis, and the formation of sodium silicate was detected with XRD. The SiO2-Na2SiO3-coated SSF surface exhibited superior underwater superoleophobic properties (153–162°), super-hydrophilicity and high separation efficiency for dichloromethane–water, n-hexane–water, tetrachloromethane–water, paroline–water, and hexadecane–water mixtures. In addition, the as-prepared SiO2-Na2SiO3-coated SSF demonstrated superior wear resistance, long-term stability, and re-usability. We suggest that the improved durability may be due to the presence of sodium silicate that enhanced the membrane strength. The SiO2-Na2SiO3-coated SSF also exhibited desirable corrosion resistance in salty and acidic environments; however, further optimization is needed for their use in basic media. The current study presents a novel approach to fabricate high-performance oil–water separation membranes.
Collapse
|
10
|
Facile design of a stable and inorganic underwater superoleophobic copper mesh modified by self-assembly sodium silicate and aluminum oxide for oil/water separation with high flux. J Colloid Interface Sci 2021; 598:483-491. [PMID: 33934014 DOI: 10.1016/j.jcis.2021.04.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Separation meshes with special wettability for oil/water separation have drawn much research attention and the preparation of superhydrophobic or underwater superoleophobic materials for oil/water separation has been extensively studied. However, the preparation procedures of inorganic coatings in previous studies were complex and the widely used organic compounds for surface modification were costly and unstable. To address these challenges, the layer-by-layer self-assembly process of inorganic sodium silicate and aluminum oxide powders (SSA) on the copper (Cu) mesh was explored in this paper. Hierarchical and rough structures after electrodepostion were observed by scanning electron microscope (SEM). On the SSA modified Cu mesh, contact angles (CA) of underwater trichloromethane and water in the air were 153° and 1°, respectively. Besides, the modified mesh exhibited high thermal stability, good oil/water separation properties with water flux of 19832 Lm-2h-1 and separation efficiency > 95%, and high recycling performance. The oil/water separation mechanism was that the positive intrusion pressure and the repulsive force for oil contributed to the oil/water separation performance of the mesh. The obtained mesh featured in facile design, unique wettability (underwater superoleophobic), high flux, and good recyclability and thermal stability. Therefore, it is believed that the self-assembly strategy proposed in this paper may provide a reference for preparing a highly stable inorganic mesh for oil/water separation.
Collapse
|
11
|
Zhao T, Zhu X, Huang Y, Wang Z. One-step hydrothermal synthesis of a ternary heterojunction g-C 3N 4/Bi 2S 3/In 2S 3 photocatalyst and its enhanced photocatalytic performance. RSC Adv 2021; 11:9788-9796. [PMID: 35423500 PMCID: PMC8695387 DOI: 10.1039/d1ra00729g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
In recent years, photoelectrocatalysis has been one of the hotspots of research. Graphite-like carbon nitride (g-C3N4) is one of the few non-metal semiconductors known and has good potential in the field of photocatalysis due to its simple preparation method and visible light effects. In this study, a method for compounding two semiconductor materials, In2S3 and Bi2S3, on the surface of g-C3N4 via a one-step hydrothermal method is reported, and it was found that this resulting material showed remarkable properties. The advantages of this method are as follows: (1) the formation of a heterojunction, which accelerates the separation efficiency of photogenerated carriers; (2) a large number of holes and defects on the surface of g-C3N4 are conducive to the nucleation, crystallisation and growth of In2S3 and Bi2S3. Compared with its counterpart catalysts, the CN/In2S3/Bi2S3 composite catalyst has significantly improved performance. Due to its high degree of crystallinity, the adsorption capacity of the catalyst itself is also significantly improved. In addition, the stability of the composite material maintains 90.9% after four cycles of use, and the structure is not damaged. In summary, CN/Bi2S3/In2S3 composite materials are believed to have broad application potential in the treatment of dye wastewater.
Collapse
Affiliation(s)
- Teng Zhao
- School of Chemistry and Chemical Engineering, Shihezi University Beisi Road Shihezi Xinjiang 832003 PR China +86 15699322089
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi Xinjiang 832003 PR China
| | - Xiaofeng Zhu
- School of Chemistry and Chemical Engineering, Shihezi University Beisi Road Shihezi Xinjiang 832003 PR China +86 15699322089
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi Xinjiang 832003 PR China
| | - Yufan Huang
- School of Chemistry and Chemical Engineering, Shihezi University Beisi Road Shihezi Xinjiang 832003 PR China +86 15699322089
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi Xinjiang 832003 PR China
| | - Zijun Wang
- School of Chemistry and Chemical Engineering, Shihezi University Beisi Road Shihezi Xinjiang 832003 PR China +86 15699322089
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan Shihezi Xinjiang 832003 PR China
| |
Collapse
|
12
|
Liu S, Wang J. Eco-friendly and facile fabrication of polyimide mesh with underwater superoleophobicity for oil/water separation via polydopamine/starch hybrid decoration. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117228] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Lei T, Lu D, Xu Z, Xu W, Liu J, Deng X, Huang J, Xu L, Cai X, Lin L. 2D → 3D conversion of superwetting mesh: A simple but powerful strategy for effective and efficient oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Liao R, Ma K, Tang S, Liu C, Yue H, Liang B. Biomimetic Mineralization to Fabricate Superhydrophilic and Underwater Superoleophobic Filter Mesh for Oil–Water Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rui Liao
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Siyang Tang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Hairong Yue
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Bin Liang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
15
|
Li TT, Cen X, Ren HT, Wu L, Peng HK, Wang W, Gao B, Lou CW, Lin JH. Zeolitic Imidazolate Framework-8/Polypropylene-Polycarbonate Barklike Meltblown Fibrous Membranes by a Facile in Situ Growth Method for Efficient PM 2.5 Capture. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8730-8739. [PMID: 31971766 DOI: 10.1021/acsami.9b21340] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Environmental pollution, especially air pollution, seriously endangers public health globally. Due to severe air pollution, air filters still face many challenges, especially in terms of filtration performance and filtration stability. Herein, a zeolitic imidazolate framework-8/polypropylene-polycarbonate barklike meltblown fibrous membrane (PPC/ZIF-8) was designed through meltblown and an in situ growth method, achieving efficient PM2.5 capture and high filtration stability under a harsh environment. After in situ growth, the PPC/ZIF-8 membrane could dramatically enhance the PM2.5 filtration efficiency without increasing the pressure drop; the PM2.5 filtration efficiency and quality factor were up to 32.83 and 116.86% higher than those of the pure PPC membrane, respectively. Moreover, through five filtration-wash-dry cycles, the PM2.5 filtration performance is still at a high level. This PPC/ZIF-8 membrane provides a new strategy for the preparation of an air filter with excellent comprehensive filtration performance.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials , Tiangong University , Tianjin 300387 , China
| | - Xixi Cen
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Liwei Wu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Wei Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Bo Gao
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
- Ocean College , Minjiang University , Fuzhou 350108 , China
- Department of Bioinformatics and Medical Engineering , Asia University , Taichung 41354 , Taiwan
- Department of Medical Research, China Medical University Hospital , China Medical University , Taichung 40402 , Taiwan
- College of Textile and Clothing , Qingdao University , Shandong 266071 , China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering , Tiangong University , Tianjin 300387 , China
- Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials , Tiangong University , Tianjin 300387 , China
- Ocean College , Minjiang University , Fuzhou 350108 , China
- College of Textile and Clothing , Qingdao University , Shandong 266071 , China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
- Department of Fashion Design , Asia University , Taichung 41354 , Taiwan
- School of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan
| |
Collapse
|
16
|
Fabrication of water-repellent double-layered polydopamine/copper films on mesh with improved abrasion and corrosion resistance by solution-phase reduction for oily wastewater treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Superhydrophilic anti-corrosive and superhydrophobic durable TiO2/Ti mesh for oil/water separation. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|