1
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Echakouri M, Salama A, Henni A. Experimental Investigation of the Novel Periodic Feed Pressure Technique in Minimizing Fouling during the Filtration of Oily Water Systems Using Ceramic Membranes. MEMBRANES 2022; 12:868. [PMID: 36135887 PMCID: PMC9504730 DOI: 10.3390/membranes12090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Fouling represents a bottleneck problem for promoting the use of membranes in filtration and separation applications. It becomes even more persistent when it comes to the filtration of fluid emulsions. In this case, a gel-like layer that combines droplets, impurities, salts, and other materials form at the membrane's surface, blocking its pores. It is, therefore, a privilege to combat fouling by minimizing the accumulation of these droplets that work as seeds for other incoming droplets to cluster and coalesce with. In this work, we explore the use of the newly developed and novel periodic feed pressure technique (PFPT) in combating the fouling of ceramic membranes upon the filtration of oily water systems. The PFPT is based on alternating the applied transmembrane pressure (TMP) between the operating one and zero. A PFPT cycle is composed of a filtration half-cycle and a cleaning half-cycle. Permeation occurs when the TMP is set at its working value, while the cleaning occurs when it is zero. Three PFPT patterns were examined over two feeds of oily water systems with oil contents of 100 and 200 ppm, respectively. The results show that the PFPT is very effective in minimizing the problem of fouling compared to a non-PFPT normal filtration. Furthermore, the overall drops in permeate flux during the cleaning half-cycles are compensated by appreciable enhancement due to the significant elimination of fouling development such that the overall production of filtered water is even increased. Inspection of the internal surface of the membrane post rinsing at the end of the experiment proves that all PFPT cycles maintained the ceramic membranes as clean after a 2-h operation. This can ensure a prolonged lifespan of the ceramic membrane use and a continuous greater permeate volume production. The advantage of the PFPT is that it can be implemented on existing units with minimal modification, ease of operation, and saving energy.
Collapse
|
3
|
Salama A. Coalescence of an Oil Droplet with a Permeating One over a Membrane Surface: Conditions of Permeation, Recoil, and Pinning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3672-3684. [PMID: 33734691 DOI: 10.1021/acs.langmuir.1c00077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When a droplet lands over a nonwetting surface it forms a convex interface that makes a contact angle larger than 90°. If the droplet lands over a pore opening, an interface is also formed at the pore opening that can prevent the droplet from permeating. The conditions for permeation and pinning are very much related to a threshold critical pressure that above which the droplet will permeate. This property defines a selectivity criterion for microfiltration processes of oily water systems using membrane technology. Such a feature of the membrane gets compromised, however, due to the permeation of droplets that are relatively smaller in size or whose critical entry pressure is smaller than the applied transmembrane pressure (TMP). In this work, we investigate what happens to a droplet when it coalesces with a droplet that undergoes permeation. Two scenarios are considered: namely, (1) a droplet coalesces with a permeating one whose interface inside the pore has not broken through the pore exit and (2) a droplet coalesces with a permeating one whose interface in the pore has broken through. We show that a larger droplet (that will essentially not permeate if pinned over a membrane opening) will now permeate when the pore is filled with oil from a preceding one or recoils when the interface inside the pore of a preceding droplet has not broken through the exit of the pore. This has interesting implications for the rejection capacity of the membrane, which decreases due to the permeation of droplets that would, otherwise, not permeate. A computational fluid dynamic (CFD) study has been conducted to confirm the conclusions obtained from the theoretical study and to reproduce the fates of the combined droplet after coalescence at the surface of the membrane. Furthermore, a simplified formula for estimating the critical entry pressure is developed.
Collapse
Affiliation(s)
- Amgad Salama
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
4
|
Huynh TA, Zondervan E. Dynamic modeling of fouling over multiple biofuel production cycles in a membrane reactor. CHEMICAL PRODUCT AND PROCESS MODELING 2021. [DOI: 10.1515/cppm-2020-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this paper, a novel mathematical model that combines a membrane filtration model, component balances and reaction kinetics models for an intensified separation-reaction process in membrane reactor producing biofuels was developed. A unique feature is that the proposed model can capture the dynamics of membrane fouling as function of both reversible and irreversible fouling; which leads to cyclic behavior. Fouling leads to the decline of the reactor productivity. With an appropriate fouling-model, the operational strategy can be optimized. In the case study of biodiesel production, the developed model was validated with experimental data. The model was in good agreement with the data, where R-squared are 0.96 for the permeate flux and 0.95 for the biodiesel yield. From a further analysis, the efficiency of membrane reaction system in term of productivity can be significantly improved by changing the backwashing frequency under specific operating conditions. As the backwashing frequency increased eight times, the biodiesel yield increased to more than two to three times before the permeate flux dropped under a predetermined limit due to the increase of irreversible membrane fouling.
Collapse
Affiliation(s)
- Thien An Huynh
- Sustainable Process Technology , Faculty of Science and Technology, University of Twente , Enschede , The Netherlands
| | - Edwin Zondervan
- Sustainable Process Technology , Faculty of Science and Technology, University of Twente , Enschede , The Netherlands
| |
Collapse
|
5
|
Salama A. On the estimation of the leaked volume of an oil droplet undergoing breakup in crossflow filtration: CFD investigation, scaling, and a macroscopic model. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Impact of MWCO and Dopamine/Polyethyleneimine Concentrations on Surface Properties and Filtration Performance of Modified Membranes. MEMBRANES 2020; 10:membranes10090239. [PMID: 32961881 PMCID: PMC7559832 DOI: 10.3390/membranes10090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL-1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.
Collapse
|
7
|
Salama A. Simplified Formula for the Critical Entry Pressure and a Comprehensive Insight into the Critical Velocity of Dislodgment of a Droplet in Crossflow Filtration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9634-9642. [PMID: 32693605 DOI: 10.1021/acs.langmuir.0c01852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Produced water treatment remains a challenging issue for the oil production industry. Finding ways to effectively treat oily water systems without incurring higher operational costs is the struggle and focus of recent research work. The success in establishing a modeling approach to study the filtration of oily water systems is dependent upon our understanding of the fate of oil droplets at the membrane surface. It has been determined that four fates confront oil droplets at the membrane surface, namely, permeation, breakup, pinning, and rejection. Conditions for manifestation of any of these four fates depend on two operating conditions (transmembrane pressure and crossflow velocity) in comparison with two critical conditions (entry pressure and critical velocity of dislodgment). In this work, a new simplified formula for the critical entry pressure is introduced. It compares very well with the formula already existing in the literature. Furthermore, the complete model for the critical velocity of dislodgment in crossflow filtration is presented and highlighted. More investigations on the physical processes that are involved during the pinning of a droplet at a pore opening are presented. In addition, a thorough analysis of the forces that are involved during the permeation of a droplet that could lead to its breakup is presented. It is found that, once the droplet reaches the pore opening, the interfacial tension force and the pressure force continue to increase. Following the critical configuration, these forces continuously decline and the drag force due to the crossflow field, therefore, becomes sufficient to break up the droplet.
Collapse
Affiliation(s)
- Amgad Salama
- Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
8
|
Salama A, Zoubeik M, Henni A, Ng KTW, Ibrahim H. On the design of sustainable antifouling system for the crossflow filtration of oily water systems: A multicontinuum and CFD investigation of the periodic feed pressure technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134288. [PMID: 31514026 DOI: 10.1016/j.scitotenv.2019.134288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The problem of fouling is considered a major reason for deteriorating the performance of porous membranes. Even though the accumulations of materials at the membrane surface are inevitable, efforts are continuously spent to minimize their drawbacks. Several techniques have been tested to minimize the problem of fouling. Some of these methods, however, confront some technical difficulties that make their use unfeasible. For example, in polymeric-type membranes, back flushing may result in the loss of bonding between the active and the support layers resulting thereby to the disintegration of the membrane. Recently, an interestingly new approach has been proposed that minimizes the problem of fouling and maintains the integrity of the membrane. The so-called periodic feed pressure technique, PFPT, cleans the surface of the membrane by reducing the adherence of the droplets to the membrane giving the chance to the crossflow field to sweep off pinned droplets. In this work, some of the features of the PFPT technique are highlighted using results from CFD simulation. Then we further investigate the PFPT technique in the realm of the multicontinuum modeling approach in which both the emulsion and the membrane are treated as overlapping continua. The behavior of the membrane is studied considering different transmembrane pressure values to highlight the fates of the different oil continua upon interacting with membrane continua. From the CFD highlights, it is found that during the half cycle when the TMP is set to zero, oil droplets at the surface of the membrane becomes unstable and it becomes easier for the crossflow field to dislodge them. The multicontinuum study, on the other hand, provides macroscopic analysis on the effects of different TMP cycles on important macroscopic parameters that influence the design, including the rejection capacity of membranes.
Collapse
Affiliation(s)
- Amgad Salama
- Process System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada; Environmental System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Mohamed Zoubeik
- Process System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Amr Henni
- Process System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Kelvin T W Ng
- Environmental System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Hussameldin Ibrahim
- Process System Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada; Clean Energy Technologies Research Institute (CETRi), University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|