1
|
Tsai MY, Lin LC. Pervaporation Separation of Isopropanol/Water Using Zeolite Nanosheets: A Molecular Simulation Study. J Phys Chem B 2024; 128:8546-8556. [PMID: 39183642 PMCID: PMC11382281 DOI: 10.1021/acs.jpcb.4c04237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Reducing greenhouse gas emissions plays a crucial role in slowing down the rise of the global temperature. One of the viable options is to employ renewable energy sources such as alcohols that can be produced from biomass. Specifically, one of the most common alcohols is isopropanol (IPA). Energy-intensive distillation processes are however involved in its production because of the rather low product concentration from fermentation. Membrane technologies, specifically pervaporation (PV), represent a promising alternative to the IPA/water separation. Particularly, employing zeolite nanosheets as PV membranes may provide great opportunities to extract IPA owing to their ultrathin and hydrophobic nature. By employing molecular dynamics simulations, this study conducts a systematic study on a diverse set of nanosheet candidates with the aim of exploring their potential and identifying top-performing structures. The best candidate among structures studied herein is predicted to offer an exceptional IPA/water selectivity of more than 400 with an unprecedentedly large flux. Structure-property-performance relationships have also been established to offer insights into the rational design of PV membranes with improved performance.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Dehghan F, Rashidi A, Parvizian F, Moghadassi A. Pore size engineering of cost-effective all-nanoporous multilayer membranes for propane/propylene separation. Sci Rep 2023; 13:21419. [PMID: 38049544 PMCID: PMC10695959 DOI: 10.1038/s41598-023-48841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
In this study, a new multi-layer hybrid nanocomposite membrane named MFI/GO/ZIF-8 has been synthesized. This membrane combines three nanoporous materials with different morphologies in one membrane without using polymer materials. This allows access to a previously accessible region of very high permeability and selectivity properties. In addition to introducing a new and efficient MFI/GO/ZIF-8 membrane in this work, controlling the pore size of the zeolite layer has been investigated to increase the selectivity and permeability of propylene. The membrane was made using a solvent-free hydrothermal method and a layer-by-layer deposition method. To control the pore size of the MFI layer, a two-step synthesis strategy has been implemented. In the first step, three key parameters, including crystallization time, NaOH concentration and aging time of initial suspension, are controlled. In the second step, the effect of three additional parameters including hydrothermal time, hydrothermal temperature and NH4F concentration has been investigated. The results show that the optimal pore size has decreased from 177.8 nm to 120.53 nm (i.e., 32.2%). The MFI/GO/ZIF-8 membrane with fine-tuned crystal size in the zeolite layer was subjected to detailed tests for propylene selectivity and permeability. The structural characteristics of the membrane were also performed using FT-IR, XRD, FESEM and EDS techniques. The results show that the synergistic interaction between the three layers in the nanocomposite membrane significantly improves the selectivity and permeability of propylene. The permeability and selectivity of propylene increased from 50 to 60 GPU and from 136 to 177, respectively, before and after precise crystal size control. MFI/GO/ZIF-8 membrane by controlling the pore size of the zeolite layer shows a significant increase of 23.1% in selectivity and 16.7% in propylene permeability compared to the initial state. Also, due to the precise synthesis method, the absence of solvent and the use of cheap support, the prepared membrane is considered an environmentally friendly and low-cost membrane. This study emphasizes the potential of increasing the selectivity and permeability of propylene in the MFI/GO/ZIF-8 hybrid membrane by controlling the crystal size of the zeolite layer.
Collapse
Affiliation(s)
- Fahime Dehghan
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Alimorad Rashidi
- Carbon and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, P.O. Box 14857-33111, Tehran, Iran.
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
3
|
Qing H, Fan S, Liu Y, Li C, Meng J, Yang M, Xiao Z. Thin-Film Composite (TFC) Polydimethylsiloxane (PDMS) Membrane with High Crosslinking Density Fabricated by Coaxial Electrospray for a High Flux. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Haijie Qing
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Yangchao Liu
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Chuang Li
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Jiaxin Meng
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Mingxia Yang
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, 610065Chengdu, China
| |
Collapse
|
4
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
He Z, Yang X, Mu L, Wang N, Lan X. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications. Front Bioeng Biotechnol 2022; 10:998852. [PMID: 36105602 PMCID: PMC9464926 DOI: 10.3389/fbioe.2022.998852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fouling, including inorganic, organic, bio-, and composite fouling seriously affects our daily life. To reduce these effects, antifouling strategies including fouling resistance, release, and degrading, have been proposed. Superhydrophobicity, the most widely used characteristic for antifouling that relies on surface wettability, can provide surfaces with antifouling abilities owing to its fouling resistance and/or release effects. PDMS shows valuable and wide applications in many fields, and due to the inherent hydrophobicity, superhydrophobicity can be achieved simply by roughening the surface of pure PDMS or its composites. In this review, we propose a versatile "3M" methodology (materials, methods, and morphologies) to guide the fabrication of superhydrophobic PDMS-based materials for antifouling applications. Regarding materials, pure PDMS, PDMS with nanoparticles, and PDMS with other materials were introduced. The available methods are discussed based on the different materials. Materials based on PDMS with nanoparticles (zero-, one-, two-, and three-dimensional nanoparticles) are discussed systematically as typical examples with different morphologies. Carefully selected materials, methods, and morphologies were reviewed in this paper, which is expected to be a helpful reference for future research on superhydrophobic PDMS-based materials for antifouling applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Xu S, Zuo C, Sun X, Ding X, Zhong Z, Xing W, Jin W. Enriching volatile aromatic compounds of lavender hydrolats by PDMS/ceramic composite membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Abstract
The pollution caused by microplastics around the world is an increasingly significant issue that has to be tackled with different methods and technologies. Here, we report a straightforward and rapid process combining electrodeposition and electrophoresis to produce a durable superhydrophobic coating on an aluminum substrate (UNS A91070) that has a static contact angle (153°), sliding angle (1°), and contact angle hysteresis (1°). Field emission scanning electron microscopy and high-resolution transmission electron microscopy showed the presence of a hierarchical structure with nanolayers that were 70 nm thick. The chemical composition was also analyzed using attenuated total reflectance-Fourier transform infrared spectroscopy and high-resolution X-ray photoelectron spectroscopy, which revealed that the hierarchical structure was composed of zinc laurate (Zn(C11H20COO)2) that decreased the surface free energy of the system. Moreover, the coating showed high durability against abrasion caused by the P1200 SiC paper due to the presence of TiO2 particles in the upper layers as well as the homogeneous chemical composition of the hierarchical structure. Finally, taking advantage of the superoleophilic properties of superhydrophobic surfaces, the ability of the coating to remove high-density polyethylene microplastics from water was studied.
Collapse
|
9
|
Madero-Castro RM, Calero S, Yazaydin AO. The role of hydrogen bonding in the dehydration of bioalcohols in hydrophobic pervaporation membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Kamelian FS, Mohammadi T, Naeimpoor F, Sillanpää M. One-Step and Low-Cost Designing of Two-Layered Active-Layer Superhydrophobic Silicalite-1/PDMS Membrane for Simultaneously Achieving Superior Bioethanol Pervaporation and Fouling/Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56587-56603. [PMID: 33269590 DOI: 10.1021/acsami.0c17046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.
Collapse
Affiliation(s)
- Fariba Sadat Kamelian
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
| | - Fereshteh Naeimpoor
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, 33199 Miami, Florida, United States
| |
Collapse
|
11
|
Synthesis of PMHS–PDMS composite membranes embedded with silica nanoparticles and their application to separate of DMSO from aqueous solutions. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03355-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Influence of Incorporated Polydimethylsiloxane on Properties of PA66 Fiber and Its Fabric Performance. Polymers (Basel) 2019; 11:polym11111735. [PMID: 31652859 PMCID: PMC6918184 DOI: 10.3390/polym11111735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 11/27/2022] Open
Abstract
Poly(hexamethyllene adipamide), PA66 fiber has played an important role in varied industrial applications, and its corresponding product would become more competitive if some extra value was added to PA66 fiber. In this article, polydimethylsiloxane (PDMS) was used as an additive to prepare PA66/PDMS blend fibers through melt blend spinning carried out by a screw extruder spinning machine. When the amount of incorporated PDMS was 0.5–3 wt %, the blend melt demonstrated good spinning ability, and the PA66/PDMS blend fibers exhibited excellent mechanical property and reduced hot shrinkage. Moreover, the crystallization and melting behavior of PA66 in the blend fibers turned out to be not affected by the existence of PDMS. In addition, the contact angle of water on the blend fiber surface became larger, while the value of friction coefficient on the surface of fibers got lower with increasing PDMS content in the blend fibers. After evaluating the fabric woven by PA66/PDMS blend fibers using the KES-F KES-FB-2 fabric measuring system, it was found that as PDMS content increased, the flexural rigidity and bending hysteresis would be lower, yet elasticity rate of compression work would be higher, which explained how the fabric composed of the blend fiber performed better in terms of softness and elasticity.
Collapse
|