1
|
Sayed MM, Noby H, Zkria A, Mousa HM, Yoshitake T, ElKady M. Engineered eco-friendly composite membranes with superhydrophobic/hydrophilic dual-layer for DCMD system. CHEMOSPHERE 2024; 352:141468. [PMID: 38382717 DOI: 10.1016/j.chemosphere.2024.141468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Considerable advancements have been made in the development of hydrophobic membranes for membrane distillation (MD). Nonetheless, the environmentally responsible disposal of these membranes poses a critical concern due to their synthetic composition. Herein, an eco-friendly dual-layered biopolymer-based membrane was fabricated for water desalination. The membrane was electrospun from two bio-polymeric layers. The top hydrophobic layer comprises polycaprolactone (PCL) and the bottom hydrophilic layer from cellulose acetate (CA). Additionally, silica nanoparticles (SiO2 NPs) were electrosprayed onto the top layer of the dual-layered PCL/CA membrane to enhance the hydrophobicity. The desalination performance of the modified PCL-SiO2/CA membrane was compared with the unmodified PCL/CA membrane using a direct contact membrane distillation (DCMD) unit. Results revealed that silica remarkably improves membrane hydrophobicity. The modified PCL-SiO2/CA membrane demonstrated a significant increase in water contact angle of 152.4° compared to 119° for the unmodified membrane. In addition, PCL-SiO2/CA membrane has a smaller average pore size of 0.23 ± 0.16 μm and an exceptional liquid entry pressure of water (LEPw), which is 3.8 times higher than that of PCL/CA membrane. Moreover, PCL-SiO2/CA membrane achieved a durable permeate flux of 15.6 kg/m2.h, while PCL/CA membrane showed unstable permeate flux decreasing approximately from 25 to 12 kg/m2.h over the DCMD test time. Furthermore, the modified PCL-SiO2/CA membrane achieved a high salt rejection value of 99.97% compared to a low value of 86.2% for the PCL/CA membrane after 24 h continuous DCMD operation. In conclusion, the proposed modified PCL-SiO2/CA dual-layer biopolymeric-based membrane has considerable potential to be used as an environmentally friendly membrane for the MD process.
Collapse
Affiliation(s)
- Mostafa M Sayed
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt.
| | - H Noby
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Materials Engineering and Design, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Abdelrahman Zkria
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan; Department of Physics, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Hamouda M Mousa
- Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena, 83523, Egypt; Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, 85863, Luxor, Egypt
| | - Tsuyoshi Yoshitake
- Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Marwa ElKady
- Chemical and Petrochemicals Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
2
|
Abdelrazeq H, Khraisheh M. Porosity Effect of Polystyrene Membranes on Desalination Performance: A Combined Experimental and Numerical Heat and Mass Transfer Study in Direct Contact Membrane Distillation. Polymers (Basel) 2023; 15:polym15081821. [PMID: 37111968 PMCID: PMC10144847 DOI: 10.3390/polym15081821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane distillation (MD) is a thermal-based membrane operation with high potential for use in the treatment of aqueous streams. In this study, the linear relationship between the permeate flux and the bulk feed temperature for different electrospun polystyrene membranes is discussed. The dynamics of combined heat and mass transfer mechanisms across different membrane porosities of 77%, 89%, and 94%, each with different thicknesses, are examined. The main results for the effect of porosity with respect to the thermal efficiency and evaporation efficiency of the DCMD system are reported for electrospun polystyrene membranes. A 14.6% increase in thermal efficiency was noted for a 15% increase in membrane porosity. Meanwhile, a 15.6% rise in porosity resulted in a 5% increase in evaporation efficiency. A mathematical validation along with computational predictions is presented and interlinked with the maximum thermal and evaporation efficiencies for the surface membrane temperatures at the feed and temperature boundary regions. This work helps to further understand the interlinked correlations of the surface membrane temperatures at the feed and temperature boundary regions with respect to the change in membrane porosity.
Collapse
Affiliation(s)
- Haneen Abdelrazeq
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Preparation and characterization of PPO/PS porous membrane for desalination via direct contact membrane distillation (DCMD). J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Gong X, Yin X, Wang F, Liu X, Yu J, Zhang S, Ding B. Electrospun Nanofibrous Membranes: A Versatile Medium for Waterproof and Breathable Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205067. [PMID: 36403221 DOI: 10.1002/smll.202205067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Waterproof and breathable membranes that prevent liquid water penetration, while allowing air and moisture transmission, have attracted significant attention for various applications. Electrospun nanofiber materials with adjustable pore structures, easily tunable wettability, and good pore connectivity, have shown significant potential for constructing waterproof and breathable membranes. Herein, a systematic overview of the recent progress in the design, fabrication, and application of waterproof and breathable nanofibrous membranes is provided. The various strategies for fabricating the membranes mainly including one-step electrospinning and post-treatment of nanofibers are given as a starting point for the discussion. The different design concepts and structural characteristics of each type of waterproof and breathable membrane are comprehensively analyzed. Then, some representative applications of the membranes are highlighted, involving personal protection, desalination, medical dressing, and electronics. Finally, the challenges and future perspectives associated with waterproof and breathable nanofibrous membranes are presented.
Collapse
Affiliation(s)
- Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Fei Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Xiaoyan Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 200051, China
| |
Collapse
|
5
|
Kim KC, Lin X, Li C. Structural design of the electrospun nanofibrous membrane for membrane distillation application: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82632-82659. [PMID: 36219296 PMCID: PMC9552148 DOI: 10.1007/s11356-022-23066-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
Although membrane distillation (MD) is a promising technology for water desalination and industrial wastewater treatment, the MD process is not widely applied in the global water industry due to the lack of a suitable membrane for the MD process. The design and appropriate manufacture are the most important factors for MD membrane optimization. The well-designed porous structure, superhydrophobic surface, and pore-wetting prevention of the membrane are vital properties of the MD membrane. Nowadays, electrospinning that is capable of manufacturing membranes with superhydrophobic or omni phobic properties is considered a promising technology. Electrospun nanofibrous membranes (ENMs) possess the characteristics of cylindrical morphology, re-entrant structure, and easy-shaping for a specific purpose, benefiting the membrane design and modification. Based on that, this review investigates the current state and future progress of the superhydrophobic, multi-layer, and omniphobic ENMs manufactured with various structural designs for seawater desalination and wastewater purification. We expect that this paper will provide some recommendations and guidance for further fabrication research and the configuration design of ENMs in the MD process for seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Kuk Chol Kim
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Metallurgical Faculty, Kim Chaek University of Science and Technology, Kyogu dong 60, Central District, Pyongyang, Democratic People's Republic of Korea
| | - Xiaoqiu Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Mat Radzi NH, Ahmad AL. Double layer PVDF blends PVDF‐HFP membrane with modified ZnO nanoparticles for direct contact membrane distillation (DCMD). ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nurul Hafifah Mat Radzi
- School of Chemical Engineering Universiti Sains Malaysia, Seri Ampangan Nibong Tebal Pulau Pinang 14300 Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering Universiti Sains Malaysia, Seri Ampangan Nibong Tebal Pulau Pinang 14300 Malaysia
| |
Collapse
|
7
|
Rauter MT, Schnell SK, Kjelstrup S. Cassie-Baxter and Wenzel States and the Effect of Interfaces on Transport Properties across Membranes. J Phys Chem B 2021; 125:12730-12740. [PMID: 34755514 PMCID: PMC8630791 DOI: 10.1021/acs.jpcb.1c07931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass transfer across a liquid-repelling gas permeable membrane is influenced by the state(s) of the liquid-vapor interface(s) on the surface of the membrane, the pore geometry, and the solid-fluid interactions inside the membrane. By tuning the different local contributions, it is possible to enhance the temperature difference-driven mass flux across the membrane for a constant driving force. Non-equilibrium molecular dynamics simulations were used to simulate a temperature difference-driven mass flux through a gas permeable membrane with the evaporating liquid on one side and the condensing liquid on the other. Both sides were simulated for Wenzel- and Cassie-Baxter-like states. The interaction between the fluid and the solid inside the gas permeable membrane varied between the wetting angles of θ = 125° and θ = 103°. For a constant driving force, the Cassie-Baxter state led to an increased mass flux of almost 40% in comparison to the Wenzel state (given a small pore resistance). This difference was caused by an insufficient supply of vapor particles at the pore entrance in the Wenzel state. The difference between the Wenzel and Cassie-Baxter states decreased with increasing resistance of the pore. The condensing liquid-vapor interface area contributed in the same manner to the overall transport resistance as the evaporating liquid-vapor interface area. A higher repulsion between the fluid and the solid inside the membrane decreased the overall resistance.
Collapse
Affiliation(s)
- Michael T Rauter
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sondre K Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
8
|
Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zhang P, Liu W, Rajabzadeh S, Jia Y, Shen Q, Fang C, Kato N, Matsuyama H. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
11
|
Preparation and Characterization of a Novel Poly(vinylidene fluoride-co-hexafluoropropylene)/Poly(ethersulfone) Blend Membrane Fabricated Using an Innovative Method of Mixing Electrospinning and Phase Inversion. Polymers (Basel) 2021; 13:polym13050790. [PMID: 33806655 PMCID: PMC7961782 DOI: 10.3390/polym13050790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, a novel polymeric membrane was innovated in terms of composition and preparation techniques. A blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PcH) and poly(ethersulfone) (PES) (18 wt.% total polymer concentration) was prepared using a N-methylpyrrolidone (NMP) and N, N-Dimethylformamide (DMF) solvents mixture, while Lithium chloride (0.05–0.5 wt.%) was used as an additive. The electrospinning and phase inversion techniques were used together to obtain a novel membrane structure. The prepared membranes were characterized using scanning electron microscope imaging, energy dispersive X-Ray, differential scanning calorimeter, thermogravimetric analysis, and Fourier transfer infrared spectroscopy-attenuated total reflectance analyses. Moreover, the static water contact angle, membrane thickness, porosity, surface roughness as well as water vapor permeability were determined. ImageJ software was used to estimate the average fiber diameter. Additionally, the effect of the change of PcH concentration and coagulation bath temperature on the properties of the fabricated membrane was studied. The novel developed membrane has shown a good efficiency in terms of properties and features, as a membrane suitable for membrane distillation (MD); a high porosity (84.4% ± 0.6), hydrophobic surface (136.39° ± 3.1 static water contact angle), and a water vapor permeability of around 4.37 × 10−5 g·m/m2·day·Pa were obtained. The prepared membrane can be compared to the MD membranes commercially available in terms of properties and economic value.
Collapse
|
12
|
One-step fabrication of brass filter with reversible wettability by nanosecond fiber laser ablation for highly efficient oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Fabrication of superhydrophobic PDTS-ZnO-PVDF membrane and its anti-wetting analysis in direct contact membrane distillation (DCMD) applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Mat Radzi NH, Ahmad AL. Effect of ZnO nanoparticles loading in double‐layer polyvinylidene fluoride membrane for desalination via direct contact membrane distillation. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering Universiti Sains Malaysia Nibong Tebal Penang 14300 Malaysia
| |
Collapse
|
15
|
Highly Saline Water Desalination Using Direct Contact Membrane Distillation (DCMD): Experimental and Simulation Study. WATER 2020. [DOI: 10.3390/w12061575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The path for water molecules transported across a membrane in real porous membranes has been considered to be a constant factor in the membrane distillation (MD) process (i.e., constant tortuosity); as such, its effect on membrane performance at various operating conditions has been ignored by researchers. Therefore, a simultaneous heat and mass transfer model throughout the direct contact membrane distillation (DCMD) module was developed in this study by taking into account the hypothetical path across the membrane as a variable factor within the operating conditions because it exhibits the changes to the mass transfer resistance across the membrane under the DCMD run. The DCMD process was described by the developed model using a system of nonlinear equations and solved numerically by MATLAB software. The performance of the poly-tetra-fluoroethylene (PTFE) membrane was examined to treat 200 g/L NaCl saline at various operating conditions. The simulation results in the present work showed that the hypothetical proposed path across the membrane has a variable value and was affected by changing the feed temperature and feed concentration. The results estimated by the developed model showed an excellent conformity with the experimental results. The salt rejection remained high (greater than 99.9%) in all cases. The temperature polarization coefficient for the DCMD ranged between 0.88 and 0.967, and the gain output ratio (GOR) was 0.893. The maximum thermal efficiency of the system was 84.5%.
Collapse
|
16
|
Floros IN, Kouvelos EP, Pilatos GI, Hadjigeorgiou EP, Gotzias AD, Favvas EP, Sapalidis AA. Enhancement of Flux Performance in PTFE Membranes for Direct Contact Membrane Distillation. Polymers (Basel) 2020; 12:E345. [PMID: 32033433 PMCID: PMC7077436 DOI: 10.3390/polym12020345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
This work focused on enhancing the flux on hydrophobic polymeric membranes aimed for direct contact membrane distillation desalination (DCMD) process without compromising salt rejection efficiency. Successful coating of commercial porous poly-tetrafluoroethylene membranes with poly(vinyl alcohol) (PVA) was achieved by solution dipping followed by a cross-linking step. The modified membranes were evaluated for their performance in DCMD, in terms of water flux and salt rejection. A series of different PVA concentration dipping solutions were used, and the results indicated that there was an optimum concentration after which the membranes became hydrophilic and unsuitable for use in membrane distillation. Best performing membranes were achieved under the specific experimental conditions, water flux 12.2 L·m-2·h-1 [LMH] with a salt rejection of 99.9%. Compared to the pristine membrane, the flux was enhanced by a factor of 2.7. The results seemed to indicate that introducing hydrophilic characteristics in a certain amount to a hydrophobic membrane could significantly enhance the membrane distillation (MD) performance without compromising salt rejection.
Collapse
Affiliation(s)
- Ioannis N. Floros
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos P. Kouvelos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Georgios I. Pilatos
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | | | - Anastasios D. Gotzias
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| | - Andreas A. Sapalidis
- Institute of Nanoscience and Nanotechnology (INN), National Centre for Scientific Research (NCSR) “Demokritos”, 15310 Athens, Greece; (I.N.F.); (E.P.K.); (G.I.P.); (A.D.G.); (E.P.F.)
| |
Collapse
|