1
|
Liu C, Si Z, Wu H, Zhuang Y, Zhang C, Zhang G, Zhang X, Qin P. High-/Low-Molecular-Weight PDMS Photo-Copolymerized Membranes for Ethanol Recovery. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chang Liu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zhihao Si
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hanzhu Wu
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yan Zhuang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Ganggang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xinmiao Zhang
- Environmental Protection Research Institute, Beijing Research Institute of Chemical Industry, Beijing100000, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
2
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Unlu D. High-efficiency pervaporative separation of fuel bioadditive methylal from methanol by poly(vinyl alcohol)/poly(vinylpyrrolidone) blend membrane. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|
6
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Bakhshandeh Rostami S, Saljoughi E, Mousavi SM, Kiani S. Preparation of polyphenylsulfone/graphene nanocomposite membrane for the pervaporation separation of cumene from water. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Ehsan Saljoughi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Seyed Mahmoud Mousavi
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Shirin Kiani
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
9
|
Hsieh CW, Li BX, Suen SY. Alicyclic Polyimide/SiO 2 Mixed Matrix Membranes for Water/n-Butanol Pervaporation. MEMBRANES 2021; 11:membranes11080564. [PMID: 34436327 PMCID: PMC8398008 DOI: 10.3390/membranes11080564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Alicyclic polyimides (PIs) have excellent properties in solubility, mechanical strength, thermal property, etc. This study developed two types of alicyclic PI-based mixed matrix membranes (MMMs) for water/n-butanol pervaporation application, which have never been investigated previously. The fillers were hydrophilic SiO2 nanoparticles. The synthesized PI was mixed with SiO2 nanoparticles in DMAc to make the casting solution, and a liquid film was formed over PET substrate using doctor blade. A dense MMM was fabricated at 80 °C and further treated via multi-stage curing (100–170 °C). The prepared membranes were characterized by FTIR, TGA, FE-SEM, water contact angle, and solvent swelling. The trends of pure solvent swelling effects agree well with the water contact angle results. Moreover, the pervaporation efficiencies of alicyclic PI/SiO2 MMMs for 85 wt% n-butanol aqueous solution at 40 °C were investigated. The results showed that BCDA-3,4′-ODA/SiO2 MMMs had a larger permeation flux and higher separation factor than BCDA-1,3,3-APB/SiO2 MMMs. For both types of MMMs, the separation factor increased first and then decreased, with increasing SiO2 loading. Based on the PSI performance, the optimal SiO2 content was 0.5 wt% for BCDA-3,4′-ODA/SiO2 MMMs and 5 wt% for BCDA-1,3,3-APB/SiO2 MMMs. The overall separation efficiency of BCDA-3,4′-ODA-based membranes was 10–30-fold higher.
Collapse
Affiliation(s)
- Ching-Wen Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Bo-Xian Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Chaudhari S, Shin H, Choi S, Cho K, Shon M, Nam S, Park Y. Hydrophilic and organophilic pervaporation of industrially important α,β and α,ω-diols. RSC Adv 2021; 11:9274-9284. [PMID: 35423423 PMCID: PMC8695363 DOI: 10.1039/d1ra00467k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
The distillation-based purification of α,β and α,ω-diols is energy and resource intensive, as well as time consuming. Pervaporation separation is considered to be a remarkable energy efficient membrane technology for purification of diols. Thus, as a core pervaporation process, hydrophilic polyvinyl alcohol (PVA) membranes for the removal of water from 1,2-hexanediol (1,2-HDO) and organophilic polydimethylsiloxane-polysulfone (PDMS-PSF) membranes for the removal of isopropanol from 1,5 pentanediol (1,5-PDO) were employed. For 1,2-HDO/water separation using a feed having a 1 : 4 weight ratio of 1,2-HDO/water, the membrane prepared using 4 vol% glutaraldehyde (GA4) showed the best performance, yielding a flux of 0.59 kg m-2 h-1 and a separation factor of 175 at 40 °C. In the organophilic pervaporation separation of the 1,5-PDO/IPA feed having a 9 : 1 weight ratio of components, the PDMS membrane prepared with a molar ratio of TEOS alkoxy groups to PDMS hydroxyl groups of 70 yielded a flux of 0.12 kg m-2 h-1 and separation factor of 17 638 at 40 °C. Long term stability analysis found that both hydrophilic (PVA) and organophilic (PDMS) membranes retained excellent pervaporation output over 18 days' continuous exposure to the feed. Both the hydrophilic and organophilic membranes exhibited promising separation performance at elevated operating conditions, showing their great potential for purification of α,β and α,ω-diols.
Collapse
Affiliation(s)
- Shivshankar Chaudhari
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - HyeonTae Shin
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeoungYong Choi
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - KieYong Cho
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - MinYoung Shon
- Department of Industrial Chemistry, Pukyong National University San 100, Yongdang-Dong, Nam-Gu Busan 608-739 Korea +82 51 629 6429 +82 51 629 6440
| | - SeungEun Nam
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| | - YouIn Park
- Center for Membranes, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 305-600 Korea
| |
Collapse
|
11
|
Impacts of Green Synthesis Process on Asymmetric Hybrid PDMS Membrane for Efficient CO 2/N 2 Separation. MEMBRANES 2021; 11:membranes11010059. [PMID: 33467589 PMCID: PMC7830936 DOI: 10.3390/membranes11010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
The effects of green processes in hybrid polydimethylsiloxane (PDMS) membranes on CO2 separation have received little attention to date. The effective CO2 separation of the membranes is believed to be controlled by the reaction and curing process. In this study, hybrid PDMS membranes were fabricated on ceramic substrates using the water-in-emulsion method and evaluated for their gas transport properties. The effects of the tetraethylorthosilicate (TEOS) concentration and curing temperature on the morphology and CO2 separation performance were investigated. The viscosity measurement showed that, at specific reaction times, it is benefit beneficial to fabricate the symmetric hybrid PDMS membranes with a uniform and dense selective layer on the substrate. Moreover, the a high TEOS concentration can decrease the reaction time and obtain create the a fully crosslinked structure, allowing more efficient CO2/N2 separation. The separation performance was furtherly improved with in the membrane prepared at a high curing temperature of 120 °C. The developed membrane shows excellent CO2/N2 separation with a CO2 permeance of 27.7 ± 1.3 GPU and a CO2/N2 selectivity of 10.3 ± 0.3. Moreover, the membrane shows a stable gas separation performance of up to 5 bar of pressure.
Collapse
|
12
|
Cheng C, Yang D, Bao M, Xue C. Spray‐coated
PDMS
/
PVDF
composite membrane for enhanced butanol recovery by pervaporation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chi Cheng
- School of Bioengineering Dalian University of Technology Dalian China
| | - Decai Yang
- School of Bioengineering Dalian University of Technology Dalian China
| | - Meiting Bao
- School of Bioengineering Dalian University of Technology Dalian China
| | - Chuang Xue
- School of Bioengineering Dalian University of Technology Dalian China
| |
Collapse
|