1
|
Bharti K, Jha A, Kumar M, Manjit, Satpute AP, Akhilesh, Tiwari V, Mishra B. Correlation of surface properties with dissolution behavior of amorphous solid dispersion of Riluzole and its pharmacodynamic evaluation. J Pharm Sci 2024; 113:3554-3564. [PMID: 39414079 DOI: 10.1016/j.xphs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Formulation of amorphous solid dispersion (ASD) of any poorly water-soluble drug is among the most promising techniques to increase the dissolution profile of drug and hence its bioavailability. Various literatures give evidences of the role of drug-polymer interactions in the ASD systems, very little information is available about the surface properties of the drug molecule and their ASDs which contributes to a higher dissolution profile. Current work focuses on exploring the surface behavior of a poorly water-soluble drug Riluzole (RLZ) and its ASDs prepared with two highly hydrophilic polymers, polyacrylic acid (PAA), and polyvinylpyrrolidone vinyl acetate (PVP VA). Initial characterization using X-ray diffraction (XRD) revealed about the weight fraction of drug required to prepare a single-phase homogenous system with both the polymers. The saturation solubility and the dissolution studies showed an increase in RLZ solubility as well as the dissolution profile due to the presence of polymers. The role of polymers in changing the surface properties in terms of wettability and polarity were explored using contact angle method and X-ray photon spectroscopy (XPS). Additionally, the neuroprotective efficacy and dose dependent hepatotoxicity were also evaluated in male wistar rats. These studies confirmed the increase in the surface polarity and hence the enhanced ability of ASD formulations to interact with water. The in vivo studies indicated that at the current recommended dose the efficacy as well as toxicity is increased for the ASD formulation. Hence, this formulation can be given at a lower dose to achieve same therapeutic effect with lower toxicity.
Collapse
Affiliation(s)
- Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Manjit
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Amol Parasram Satpute
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Akhilesh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P. 221005, India.
| |
Collapse
|
2
|
Cuevas M, Moya AJ, Hodaifa G, Sánchez S, Mateo S. Acid insoluble lignin material production by chemical activation of olive endocarps for an efficient furfural adsorption-removal from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 248:118243. [PMID: 38266899 DOI: 10.1016/j.envres.2024.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The present work describes a protocol of chemical activation, with acid catalyst, of olive endocarps to obtain acid insoluble lignin-rich materials with high capacities for the adsorption of furfural present in aqueous media. During biomass activation, factors such as acid concentration, reaction time and temperature, solid/liquid ratio and the presence of water extractives strongly affected both the surface characteristics of the treated bioadsorbents and their capacities for furfural retention (percentage increase close to 600% with respect to the crude biomass). Once a treated solid with good adsorbent properties was obtained, the optimal conditions for adsorption were found: stirring speed 80 rpm, temperature 303 K and adsorbent load 7.5 g solid/50 cm3. Kinetic study indicated the pseudo-second order model provided the best fit of the experimental data. At 303 K, the equilibrium adsorption capacities values ranged from 2.27 mg g-1 to 29.29 mg g-1, for initial furfural concentrations between 0.49 g dm-3 and 12.88 g dm-3. Freundlich model presented the best isotherm (R2 = 0.996 and SE = 4.7%) providing KF and n values of 0.115 (mg g-1) (mg dm-3)-n and 0.610, respectively. Since physical interactions predominate in the adsorption of furfural on chemically activated olive endocarps, the furfural removal process could have occurred reversibly on the heterogeneous surface of the bioadsorbents.
Collapse
Affiliation(s)
- Manuel Cuevas
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Olive Grove and Olive Oil Research Institute, ES-23071 Jaén, Spain
| | - Alberto J Moya
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Olive Grove and Olive Oil Research Institute, ES-23071 Jaén, Spain
| | - Gassan Hodaifa
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, Seville, Spain
| | - Sebastián Sánchez
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Olive Grove and Olive Oil Research Institute, ES-23071 Jaén, Spain
| | - Soledad Mateo
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Olive Grove and Olive Oil Research Institute, ES-23071 Jaén, Spain.
| |
Collapse
|
3
|
Zhang S, Yang Z, Huang X, Wang J, Xiao Y, He J, Feng J, Xiong S, Li Z. Hydrophobic Cellulose Acetate Aerogels for Thermal Insulation. Gels 2022; 8:671. [PMID: 36286172 PMCID: PMC9602360 DOI: 10.3390/gels8100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
As naturally derived material, cellulose aerogels have excellent thermal insulation properties due to their unique high porosity and three-dimensional mesoporous structure. However, its hydrophilic properties limit its application in the field of building insulation. Here, we propose a method to prepare high hydrophobicity by adopting the sol-gel method and chemical vapor reaction strategy using cellulose acetate type II as raw material and 2,4-toluene diisocyanate as the cross-linking agent. Thermal properties of cellulose acetate aerogels (CAAs) were measured, where pyridine was the catalyst, acetone was the solvent, and perfluorodecyltriethoxysilane (PFDS), hexamethyldisilazane (HMDS), and methyltriethoxysilane (MTES) were used as hydrophobic agents (by process hydrophobic test). Compared with MTES-modified cellulose acetate aerogels (M-CAAs) and HMDS (H-CAAs)-modified cellulose acetate aerogels, PFDS-modified (P-CAAs) cellulose acetate aerogels are the most hydrophobic. By implementing hydrophobic modification of PFDS both inside and outside the structure of cellulose acetate aerogels, the water contact angle can reach up to 136°, strongly demonstrating the potential of PFDS as a hydrophobic agent. The results show that the thermal conductivity and compressive strength of cellulose acetate aerogel with the best hydrophobic properties are 0.035 W m-1 K-1 at normal pressure and 0.39 MPa at 3% strain, respectively. This work shows that the highly hydrophobic cellulose acetate aerogel has potential as a waterproof material in the field of building thermal-insulation materials.
Collapse
Affiliation(s)
- Sizhao Zhang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
- Postdoctoral Research Station on Mechanics, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
| | - Zhouyuan Yang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Xing Huang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Jing Wang
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yunyun Xiao
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Junpeng He
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Shixian Xiong
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zhengquan Li
- Polymer Aerogels Research Center, Jiangxi University of Science and Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Wang Y, Xue T, Si Z, Liu C, Yang S, Li G, Zhuang Y, Qin P. Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Xu Q, Wang H, Zhang M, Wang J, An X, Hao X, Du X, Zhang Z, Li Y. Pervaporation Removal of Pyridine from Saline Pyridine/Water Effluents Using PEBA-2533 Membranes: Experiment and Simulation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qian Xu
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hongyun Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Meng Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jie Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhonglin Zhang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yongguo Li
- China Institute for Radiation Protection, Taiyuan 030006, P. R. China
| |
Collapse
|
7
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Lin TH, Toai PTD, Tinh NT, Phat LN, Huong LM, Viet ND, Dat NM, Nam HM, Phong MT, Hieu NH. Fabrication of ceramic tube‐supported tetraethyl‐orthosilicate cross‐linked polydimethylsiloxane membranes for separation of furfural–water mixture by pervaporation technology. J Appl Polym Sci 2022. [DOI: 10.1002/app.52380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tong Hoang Lin
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Phan Thi Danh Toai
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Ninh Thi Tinh
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - La Nam Phat
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Le Minh Huong
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Nguyen Minh Dat
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Hoàng Minh Nam
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU‐HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Ren C, Si Z, Qu Y, Li S, Wu H, Meng F, Zhang X, Wang Y, Liu C, Qin P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Chang PY, Wang J, Li SY, Suen SY. Biodegradable Polymeric Membranes for Organic Solvent/Water Pervaporation Applications. MEMBRANES 2021; 11:membranes11120970. [PMID: 34940471 PMCID: PMC8708743 DOI: 10.3390/membranes11120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Biodegradable polymers are a green alternative to apply as the base membrane materials in versatile processes. In this study, two dense membranes were made from biodegradable PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)), respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC, water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysiloxane) membrane. In the pervaporation process for five organic solvent/water systems at 37 °C, both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic acid/water separations, while the PDMS membrane attained better effectiveness in the other three systems. In particular, a positive relationship between the separation factor and the swelling ratio of organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month. Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those reported in the literature.
Collapse
Affiliation(s)
- Pao-Yueh Chang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Si-Yu Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (S.-Y.L.); (S.-Y.S.)
| |
Collapse
|
11
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Mao H, Li SH, Zhang AS, Xu LH, Lu HX, Lv J, Zhao ZP. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
The fabrication, characterization, and pervaporation performance of poly(ether-block-amide) membranes blended with 4-(trifluoromethyl)-N(pyridine-2-yl)benzamide and 4-(dimethylamino)-N(pyridine-2-yl)benzamide fillers. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Mass transport and pervaporation recovery of aniline with high-purity from dilute aqueous solution by PEBA/PVDF composite membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Hsieh CW, Li BX, Suen SY. Alicyclic Polyimide/SiO 2 Mixed Matrix Membranes for Water/n-Butanol Pervaporation. MEMBRANES 2021; 11:membranes11080564. [PMID: 34436327 PMCID: PMC8398008 DOI: 10.3390/membranes11080564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Alicyclic polyimides (PIs) have excellent properties in solubility, mechanical strength, thermal property, etc. This study developed two types of alicyclic PI-based mixed matrix membranes (MMMs) for water/n-butanol pervaporation application, which have never been investigated previously. The fillers were hydrophilic SiO2 nanoparticles. The synthesized PI was mixed with SiO2 nanoparticles in DMAc to make the casting solution, and a liquid film was formed over PET substrate using doctor blade. A dense MMM was fabricated at 80 °C and further treated via multi-stage curing (100–170 °C). The prepared membranes were characterized by FTIR, TGA, FE-SEM, water contact angle, and solvent swelling. The trends of pure solvent swelling effects agree well with the water contact angle results. Moreover, the pervaporation efficiencies of alicyclic PI/SiO2 MMMs for 85 wt% n-butanol aqueous solution at 40 °C were investigated. The results showed that BCDA-3,4′-ODA/SiO2 MMMs had a larger permeation flux and higher separation factor than BCDA-1,3,3-APB/SiO2 MMMs. For both types of MMMs, the separation factor increased first and then decreased, with increasing SiO2 loading. Based on the PSI performance, the optimal SiO2 content was 0.5 wt% for BCDA-3,4′-ODA/SiO2 MMMs and 5 wt% for BCDA-1,3,3-APB/SiO2 MMMs. The overall separation efficiency of BCDA-3,4′-ODA-based membranes was 10–30-fold higher.
Collapse
Affiliation(s)
- Ching-Wen Hsieh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Bo-Xian Li
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
| | - Shing-Yi Suen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (C.-W.H.); (B.-X.L.)
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
16
|
Si Z, Liu C, Li G, Wang Z, Li J, Xue T, Yang S, Cai D, Li S, Zhao H, Qin P, Tan T. Epoxide-based PDMS membranes with an ultrashort and controllable membrane-forming process for 1-butanol/water pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Cheng C, Yang D, Bao M, Xue C. Spray‐coated
PDMS
/
PVDF
composite membrane for enhanced butanol recovery by pervaporation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chi Cheng
- School of Bioengineering Dalian University of Technology Dalian China
| | - Decai Yang
- School of Bioengineering Dalian University of Technology Dalian China
| | - Meiting Bao
- School of Bioengineering Dalian University of Technology Dalian China
| | - Chuang Xue
- School of Bioengineering Dalian University of Technology Dalian China
| |
Collapse
|