1
|
Pach A, Zaryczny A, Podborska A, Luty-Błocho M. The Role of Ascorbic Acid in the Process of Azo Dye Degradation in Aqueous Solution. Molecules 2024; 29:3659. [PMID: 39125065 PMCID: PMC11313820 DOI: 10.3390/molecules29153659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, the role of ascorbic acid in the process of azo dye degradation was explained. For this purpose, the kinetics of azo dye degradation under different conditions was studied. Among them, the influence of daylight protection/exposition, different concentrations of ascorbic acid (0.567-0.014 mol/dm3), and temperature (20 °C and 50 °C) on the rate of the dyes' degradation was considered. For this process, the kinetic equation was proposed, which indicates that the process of azo dye degradation using ascorbic acid is first order. Moreover, the observed rate constants were determined, and the mechanism of azo dye degradation was proposed. Spectrophotometry results, together with FTIR, fluorescence spectroscopy, and DFT calculations, explain the origin of the decolorization of the azo dyes and highlight the role of ascorbic acid in this process. Detailed analysis of the obtained products indicates that the process itself goes through several stages in which equally or more toxic compounds are formed. Obtained results from LCMS studies indicate that during tropaeolin OO degradation, 1,2-Diphenylhydrazine (m/z 185.1073) is formed. Thus, the process of azo dye degradation should be carried out in protective conditions. The proposed mechanism suggests that ascorbic acid at high content levels can be used for azo dye degradation from aqueous solution and can be an alternative method for their removal/neutralization from waste solution but with caution during the process.
Collapse
Affiliation(s)
- Adrianna Pach
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| | - Aleksandra Zaryczny
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| | - Agnieszka Podborska
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| |
Collapse
|
2
|
Sharifi A, Rajabi Abhari A, Imanzadeh M, Mahmoodi Z, Farrokhzadeh S. Modeling RSM of photocatalytic treatment of Acid Red 18 pollutant using ZnO–Cr nano-photocatalyst, kinetic studies, and energy management. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ZnO–Cr nano-photocatalyst was synthesized using a microwave-assisted solution combustion method and applied for the photodegradation of the organic pollutant Acid Red 18 (AR18). The synthesized nano-photocatalyst was characterized by XRD, FESEM, EDX, and FTIR methods. To reach the optimal condition of the treatment, the response surface methodology was used in the central composite design model. The amount of nano-photocatalyst, pH of the solution, and initial concentration of the pollutant were optimized. The polynomial 3-degree model was fitted to the photodegradation data, and the correlation coefficients of the model showed an interaction between the parameters. Optimization of the polynomial model for pollutant treatment was investigated under the same conditions, and the comparison of the observed and predicted treatment models showed a low difference in decolorization. The intermediates were identified by liquid chromatography/mass spectrometry. A kinetic study showed that the first-order kinetic constant for the degradation of pollutant concentrations from 10 to 30 mg L−1 changed from 0.0178 to 0.0058 min–1. Finally, economic evaluation and energy management of the process showed that the decolorization process was more economical at low pollutant concentrations.
Collapse
Affiliation(s)
- Abdolkarim Sharifi
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Abbas Rajabi Abhari
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| | - Mehdi Imanzadeh
- Department of Chemistry, Parsabad Moghan Branch, Islamic Azad University, Parsabad, Iran
| | - Zahra Mahmoodi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Farrokhzadeh
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
3
|
Photo-Oxidation of Ammonia to Molecular Nitrogen in Water under UV, Vis and Sunlight Irradiation. Catalysts 2021. [DOI: 10.3390/catal11080975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titanium dioxide-based photocatalysts have been used to perform the photo-oxidation of ammonium/ammonia to molecular nitrogen. Different light sources were employed, i.e., UV, LED visible light and natural sunlight, and their performance was compared in order to understand which setup was the most efficient. It was found that under selected conditions, the LED lamp, in combination with silver-promoted TiO2, was able to push the conversion of ammonium toward 48% after 4 h of reaction time. On the other hand, with a more powerful UV lamp, lower conversion was achieved, ca. 40%. Natural sunlight under the same conditions attained more than 38% conversion, but the fluctuation of the reaction conditions remain a very critical issue for the real exploitation of sunlight in water treatment.
Collapse
|
4
|
Mohamed Isa ED, Shameli K, Ch'ng HJ, Che Jusoh NW, Hazan R. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Cheng H, Yuan M, Zeng Q, Zhou H, Zhan W, Chen H, Mao Z, Wang Y. Efficient reduction of reactive black 5 and Cr(Ⅵ) by a newly isolated bacterium of Ochrobactrum anthropi. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124641. [PMID: 33321321 DOI: 10.1016/j.jhazmat.2020.124641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/24/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
It is important to obtain bacteria with the ability for reduction of dyes and Cr(Ⅵ) since dyes and Cr(Ⅵ) are often co-exist in textile wastewater. In this study, a new strain belonging to Ochrobactrum anthropi was isolated from textile wastewater, and could efficiently reduce Reactive Black 5 (RB 5) and Cr(Ⅵ). The results showed the degradation efficiency of RB 5 could achieve 100% and reduction efficiency of Cr(Ⅵ) was up to 80% within 3 days at initial RB 5 and Cr(Ⅵ) concentration of 400 mg/L and 20 mg/L. Mn2+ and Cu2+ could enhance the removal of RB 5 and Cr(Ⅵ), respectively. Glycerin, as electron donor, improved reduction efficiencies of RB 5 and Cr(Ⅵ). In addition, reduction mechanisms were further investigated. The results demonstrated that decreasing of RB 5 and Cr(Ⅵ) concentration were mainly through extracellular bioreduction rather than by adsorption. The FTIR and XPS analyses revealed that the O‒H, C‒C and C‒H groups on the cell surface might be involved in the reduction of RB 5 and Cr(Ⅵ). The information gives useful insights into understanding of how the bacterium reduce RB 5 and Cr(Ⅵ). The results indicated that the strain had excellent application prospect for treating industrial wastewater.
Collapse
Affiliation(s)
- Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Mingzhu Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronauts Research and Training Center, Beijing 100094, China
| | - Hui Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Zhenhua Mao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha 410083, Hunan, China.
| |
Collapse
|
6
|
Salari N, M A Tehrani R, Motamedi M. Zeolite modification with cellulose nanofiber/magnetic nanoparticles for the elimination of reactive red 198. Int J Biol Macromol 2021; 176:342-351. [PMID: 33545183 DOI: 10.1016/j.ijbiomac.2021.01.219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 01/31/2021] [Indexed: 01/31/2023]
Abstract
In this paper for the first time, a cost-effective reinforced zeolite with cellulose nanofibers and magnetic nanoparticles (MZeo/Cellulose nanofiber) was used for the elimination of reactive red 198 (RR198) dye. The fabricated sorbent was characterized by SEM, FTIR, and XRD. The effect of operational parameters, including pH, RR198 concentration, the mass ratios of zeolite to cellulose nanofiber and zeolite coated cellulose to Fe3O4 nanoparticles, contact time, agitation speed, sorbent dosage, and temperature were studied. The prepared sorbent exhibited the maximum removal efficiency of 99% for RR198 removal at 30 °C. The presence of other dyes along with the target dye did not negatively affect the adsorption process and RR198 removal efficiency from actual water samples seemed satisfactory and rational. Equilibrium studies confirmed that both Langmuir and Freundlich models described the RR198 adsorption on MZeo/Cellulose nanofiber indicating physical and chemical interactions between the sorbent and RR198 molecules. Kinetic studies demonstrated that pseudo-second-order fitted best with experimental data. Also, thermodynamic studies showed the endothermic nature of the adsorption process. Compared to zeolite, MZeo/Cellulose nanofiber represented a promising removal efficiency for the elimination of RR198 dye from contaminated water.
Collapse
Affiliation(s)
- Narges Salari
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ramin M A Tehrani
- Young Researcher and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
| | - Mahsa Motamedi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Abstract
Hydrogen production has been investigated through the photoreforming of glucose, as model molecule representative for biomass hydrolysis. Different copper- or nickel-loaded titania photocatalysts have been compared. The samples were prepared starting from three titania samples, prepared by precipitation and characterized by pure Anatase with high surface area, or prepared through flame synthesis, i.e., flame pyrolysis and the commercial P25, leading to mixed Rutile and Anatase phases with lower surface area. The metal was added in different loading up to 1 wt % following three procedures that induced different dispersion and reducibility to the catalyst. The highest activity among the bare semiconductors was exhibited by the commercial P25 titania, while the addition of 1 wt % CuO through precipitation with complexes led to the best hydrogen productivity, i.e., 9.7 mol H2/h kgcat. Finally, a basic economic analysis considering only the costs of the catalyst and testing was performed, suggesting CuO promoted samples as promising and almost feasible for this application.
Collapse
|