1
|
Ortiz-Ardila AE, Celis C, Usack JG, Angenent LT, Labatut RA. Microaeration promotes volatile siloxanes conversion to methane and simpler monomeric products. BIORESOURCE TECHNOLOGY 2024; 400:130673. [PMID: 38583676 DOI: 10.1016/j.biortech.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
The ubiquitous use of volatile siloxanes in a myriad of product formulations has led to a widespread distribution of these persistent contaminants in both natural ecosystems and wastewater treatment plants. Microbial degradation under microaerobic conditions is a promising approach to mitigate D4 and D5 siloxanes while recovering energy in wastewater treatment plants. This study examined D4/D5 siloxanes biodegradation under both anaerobic and microaerobic conditions ( [Formula: see text] = 0, 1, 3 %) using wastewater sludge. Results show that the use of microaeration in an otherwise strictly anaerobic environment significantly enhances siloxane conversion to methane. 16S rRNA gene sequencing identified potential degraders, including Clostridium lituseburense, Clostridium bifermentans and Synergistales species. Furthermore, chemical analysis suggested a stepwise siloxane conversion preceding methanogenesis under microaerobic conditions. This study demonstrates the feasibility of microaerobic siloxane biodegradation, laying groundwork for scalable removal technologies in wastewater treatment plants, ultimately highlighting the importance of using bio-based approaches in tackling persistent pollutants.
Collapse
Affiliation(s)
- A E Ortiz-Ardila
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany; Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Celis
- Environmental Technology and Materials Centre, Department of Chemistry, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J G Usack
- Department of Food Science and Technology, University of Georgia, Athens, Georgia
| | - L T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany; AG Angenent, Max Planck Institute for Biology, Tübingen, Germany; Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, Denmark; The Novo Nordisk Foundation CO(2) Research Center (CORC), Aarhus University, Aarhus C, Denmark
| | - R A Labatut
- Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Wu Z, Cao X, Li M, Liu J, Li B. Treatment of volatile organic compounds and other waste gases using membrane biofilm reactors: A review on recent advancements and challenges. CHEMOSPHERE 2024; 349:140843. [PMID: 38043611 DOI: 10.1016/j.chemosphere.2023.140843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
This article provides a comprehensive review of membrane biofilm reactors for waste gas (MBRWG) treatment, focusing on studies conducted since 2000. The first section discusses the membrane materials, structure, and mass transfer mechanism employed in MBRWG. The concept of a partial counter-diffusion biofilm in MBRWG is introduced, with identification of the most metabolically active region. Subsequently, the effectiveness of these biofilm reactors in treating single and mixed pollutants is examined. The phenomenon of membrane fouling in MBRWG is characterized, alongside an analysis of contributory factors. Furthermore, a comparison is made between membrane biofilm reactors and conventional biological treatment technologies, highlighting their respective advantages and disadvantages. It is evident that the treatment of hydrophobic gases and their resistance to volatility warrant further investigation. In addition, the emergence of the smart industry and its integration with other processes have opened up new opportunities for the utilization of MBRWG. Overcoming membrane fouling and developing stable and cost-effective membrane materials are essential factors for successful engineering applications of MBRWG. Moreover, it is worth exploring the mechanisms of co-metabolism in MBRWG and the potential for altering biofilm community structures.
Collapse
Affiliation(s)
- Ziqing Wu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Xiwei Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China
| | - Jun Liu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Saeid Hosseini S, Azadi Tabar M, F. J. Vankelecom I, F. M. Denayer J. Progress in High Performance Membrane Materials and Processes for Biogas Production, Upgrading and Conversion. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Zheng Y, Hou X, Lv S, Ma Z, Ma X. Efficient Removal of Siloxane from Biogas by Using β-Cyclodextrin-Modified Reduced Graphene Oxide Aerogels. NANOMATERIALS 2022; 12:nano12152643. [PMID: 35957075 PMCID: PMC9370590 DOI: 10.3390/nano12152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022]
Abstract
In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique, using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy (SEM), contact angle measurements, and X-ray diffraction. The results of the characterizations indicate that β-CD was grafted onto the surface of rGOAs as a cross-linking modifier. The β-CD-rGOA had a three-dimensional, cross-linked porous structure. The maximum breakthrough adsorption capacity of L2 on β-CD-rGOA at 273 K was 111.8 mg g−1. A low inlet concentration and bed temperature facilitated the adsorption of L2. Moreover, the β-CD-rGOA was regenerated by annealing at 80 °C, which renders this a promising material for removing L2 from biogas.
Collapse
Affiliation(s)
- Yanhui Zheng
- Hebei Key Laboratory of Inorganic Nano-Materilas, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (X.H.); (S.L.)
- Department of Preshool and Art Education, Shijiazhuang Vocational College of Finance & Economics, Shijiazhuang 050061, China
| | - Xifeng Hou
- Hebei Key Laboratory of Inorganic Nano-Materilas, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (X.H.); (S.L.)
| | - Siqi Lv
- Hebei Key Laboratory of Inorganic Nano-Materilas, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (X.H.); (S.L.)
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materilas, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China; (Y.Z.); (X.H.); (S.L.)
- Correspondence: (Z.M.); (X.M.); Tel.: +86-311-80787400 (Z.M.)
| | - Xiaolong Ma
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Correspondence: (Z.M.); (X.M.); Tel.: +86-311-80787400 (Z.M.)
| |
Collapse
|
5
|
Pascual C, Cantera S, Lebrero R. Volatile Siloxanes Emissions: Impact and Sustainable Abatement Perspectives. Trends Biotechnol 2021; 39:1245-1248. [PMID: 34167844 DOI: 10.1016/j.tibtech.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Eliminating volatile siloxanes from gas emissions is increasingly important due to their persistent detrimental economic, societal, and environmental impacts. Although physicochemical technologies are currently the only commercially available abatement methods, recently developed biobased technologies are emerging as a more cost-effective and sustainable alternative to promote the removal of volatile siloxanes.
Collapse
Affiliation(s)
- Celia Pascual
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain
| | - Sara Cantera
- Laboratory of Microbiology, Wageningen University and Research Center, Campus Helix building 124 (Office 4030) Stippeneng 4, Wageningen 6708, WE, The Netherlands.
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain.
| |
Collapse
|