1
|
Babazadeh-Mamaqani M, Roghani-Mamaqani H, Rezaei M, Salami-Kalajahi M. Photo-induced time-dependent controllable wettability of dual-responsive multi-functional electrospun MXene/polymer fibers. J Colloid Interface Sci 2025; 678:1048-1063. [PMID: 39332123 DOI: 10.1016/j.jcis.2024.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Switchable wettability potential in smart fibers is of paramount importance in various applications. Light-induced controllable changes in surface wettability have a significant role in this area. Herein, smart waterborne homopolymer, functional copolymer with different polarity and flexibility, and multi-functional terpolymer particles containing a time-dependent dual-responsive acrylated spiropyran, as a polymerizable monomer, were successfully synthesized through eco-friendly single-step emulsifier-free emulsion polymerization. Presence of 10 wt% of butyl acrylate and dimethylaminoethyl methacrylate relative to methylmethacrylate as functional comonomers decreased the Tg of the samples almost 20 ℃ and increased their polarity. The optical properties of the particles were investigated, and the UV-vis and fluorescence spectroscopy results showed that not only polarity and flexibility of the polymer chains may have a positive effect on improving the optical properties, but also the simultaneous presence of functional groups has a synergistic effect. The smart polymer particles with flexibility and polarity features exhibited higher absorption and emission compared to other samples. Inspired by these findings, multi-functional smart polymer fibers were prepared using the electrospinning method. The smart multi-functional electrospun fibers containing few-layer Ti3C2 MXenes were synthesized to improve the fibers' properties and change the surface wettability due to the hydrophilic functional groups of MXene. Field-emission scanning electron microscopy images displayed the successful preparation of few-layer MXenes. Smooth and bead-free fibers with bright red fluorescence emission under UV irradiation were shown using fluorescence microscopy. The study on the surface wettability of fibers revealed that UV and visible light irradiation induced reversible time-dependent changes in the wettability of the smart multi-functional MXene/polymer electrospun fibers from hydrophobic to hydrophilic, reaching a water contact angle of 10° from an initial water contact angle of 100° under UV light and also changing to superhydrophilic state with passing time. Upon visible light exposure, the fibers returned to their original state. Furthermore, the fibers demonstrated a high stability over five alternating cycles of UV and visible light irradiation. This study shows that the fabrication of time-dependent smart fibers, utilizing the flexibility and polarity in the presence of MXenes, significantly improves and controls surface wettability changes. The outstanding dynamically photo-switchable wettability of these fibers may offer exciting opportunities in various applications, especially in the separation of oil from water contaminants.
Collapse
Affiliation(s)
- Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mostafa Rezaei
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
2
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Orisawayi AO, Koziol K, Hao S, Tiwari S, Rahatekar SS. Development of hybrid electrospun alginate-pulverized moringa composites. RSC Adv 2024; 14:8502-8512. [PMID: 38476176 PMCID: PMC10930300 DOI: 10.1039/d4ra00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
The consideration of biopolymers with natural products offers promising and effective materials with intrinsic and extrinsic properties that are utilized in several applications. Electrospinning is a method known for its unique and efficient performance in developing polymer-based nanofibers with tunable and diverse properties presented as good surface area, morphology, porosity, and fiber diameters during fabrication. In this work, we have developed an electrospun sodium alginate (SA) incorporated with pulverized Moringa oleifera seed powder (PMO) as a potential natural biosorbent material for water treatment applications. The developed fibers when observed using a scanning electron microscope (SEM), presented pure sodium alginate with smooth fiber (SAF) characteristics of an average diameter of about 515.09 nm (±114.33). Addition of pulverized Moringa oleifera at 0.5%, 2%, 4%, 6%, and 8% (w/w) reduces the fiber diameter to an average of about 240 nm with a few spindle-like pulverized Moringa oleifera particles beads of 300 nm (±77.97) 0.5% particle size and 110 nm (±32.19) with the clear observation of rougher spindle-like pulverized Moringa oleifera particle beads of 680 nm (±131.77) at 8% of alginate/Moringa oleifera fiber (AMF). The results from the rheology presented characteristic shear-thinning or pseudoplastic behaviour with a decline in viscosity, with characteristic behaviour as the shear rate increases, indicative of an ideal polymer solution suitable for the spinning process. Fourier transform infrared spectroscopy (FT-IR) shows the presence of amine and amide functional groups are prevalent on the alginate-impregnated moringa with water stability nanofibers and thermogravimetric analysis (TGA) with change in degradation properties in a clear indication and successful incorporation of the Moringa oleifera in the electrospun fiber. The key findings from this study position nanofibers as sustainable composites fiber for potential applications in water treatment, especifically heavy metal adsorption.
Collapse
Affiliation(s)
- Abimbola Oluwatayo Orisawayi
- Composites and Advanced Materials Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University Bedfordshire MK43 0AL UK
- Department of Mechanical Engineering, School of Engineering and Engineering Technology Olusegun Agagu University of Science and Technology, (OAUSTECH) Okitipupa Nigeria
| | - Krzysztof Koziol
- Composites and Advanced Materials Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University Bedfordshire MK43 0AL UK
| | - Shuai Hao
- Composites and Advanced Materials Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University Bedfordshire MK43 0AL UK
| | - Shivam Tiwari
- Composites and Advanced Materials Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University Bedfordshire MK43 0AL UK
| | - Sameer S Rahatekar
- Composites and Advanced Materials Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University Bedfordshire MK43 0AL UK
- Department of Mechanical Engineering, School of Engineering and Engineering Technology Olusegun Agagu University of Science and Technology, (OAUSTECH) Okitipupa Nigeria
| |
Collapse
|
4
|
Al-Hazmi HE, Łuczak J, Habibzadeh S, Hasanin MS, Mohammadi A, Esmaeili A, Kim SJ, Khodadadi Yazdi M, Rabiee N, Badawi M, Saeb MR. Polysaccharide nanocomposites in wastewater treatment: A review. CHEMOSPHERE 2024; 347:140578. [PMID: 37939921 DOI: 10.1016/j.chemosphere.2023.140578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
In modern times, wastewater treatment is vital due to increased water contamination arising from pollutants such as nutrients, pathogens, heavy metals, and pharmaceutical residues. Polysaccharides (PSAs) are natural, renewable, and non-toxic biopolymers used in wastewater treatment in the field of gas separation, liquid filtration, adsorption processes, pervaporation, and proton exchange membranes. Since addition of nanoparticles to PSAs improves their sustainability and strength, nanocomposite PSAs has gained significant attention for wastewater treatment in the past decade. This review presents a comprehensive analysis of PSA-based nanocomposites used for efficient wastewater treatment, focusing on adsorption, photocatalysis, and membrane-based methods. It also discusses potential future applications, challenges, and opportunities in adsorption, filtration, and photocatalysis. Recently, PSAs have shown promise as adsorbents in biological-based systems, effectively removing heavy metals that could hinder microbial activity. Cellulose-mediated adsorbents have successfully removed various pollutants from wastewater, including heavy metals, dyes, oil, organic solvents, pesticides, and pharmaceutical residues. Thus, PSA nanocomposites would support biological processes in wastewater treatment plants. A major concern is the discharge of antibiotic wastes from pharmaceutical industries, posing significant environmental and health risks. PSA-mediated bio-adsorbents, like clay polymeric nanocomposite hydrogel beads, efficiently remove antibiotics from wastewater, ensuring water quality and ecosystem balance. The successful use of PSA-mediated bio-adsorbents in wastewater treatment depends on ongoing research to optimize their application and evaluate their potential environmental impacts. Implementing these eco-friendly adsorbents on a large scale holds great promise in significantly reducing water pollution, safeguarding ecosystems, and protecting human health.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, United States
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
5
|
Mizan MMH, Gurave PM, Rastgar M, Rahimpour A, Srivastava RK, Sadrzadeh M. "Biomass to Membrane": Sulfonated Kraft Lignin/PCL Superhydrophilic Electrospun Membrane for Gravity-Driven Oil-in-Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41961-41976. [PMID: 37624730 DOI: 10.1021/acsami.3c09964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Biobased membranes made with green solvents have numerous advantages in the water purification industry; however, their long-term use is impeded by severe membrane fouling and low structural stability. Herein, we proposed a facile and green approach to fabricate an eco-friendly and biodegradable electrospun membrane by simply blending polycaprolactone (PCL) with sulfonated kraft lignin (SKL) in a green solvent (i.e., acetic acid) without needing any additional post-treatment. We investigated the influence of SKL content on the surface morphology, chemical composition, and mechanical properties of the electrospun membrane. The SKL-modified membranes (L-5 and L-10) showed superhydrophilicity and underwater superoleophobicity with a water contact angle (WCA) of 0° (<3 s) and an underwater-oil contact angle (UWOCA) over 150° due to the combined effect of surface roughness and hydrophilic chemical functionality. Furthermore, the as-prepared membranes demonstrated excellent pure water flux of 800-900 LMH and an emulsion flux of 170-480 LMH during the gravity-driven filtration of three surfactant-stabilized oil-in-water emulsions, namely, mineral oil/water, gasoline/water, and n-hexadecane/water emulsions. In addition, these membranes exhibited superior antioil-fouling performance with excellent separation efficiency (97-99%) and a high flux recovery ratio (>98%). The 10 wt % SKL-incorporated membrane (L-10) also showed consistent separation performance after 10 cyclic tests, indicating its excellent reusability and recyclability. Furthermore, the stability of the membrane under harsh pH conditions was also evaluated and proved to be robust enough to maintain its wettability in a wide pH range (pH 1-10).
Collapse
Affiliation(s)
- Md Mizanul Haque Mizan
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pramod M Gurave
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
6
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Wang J, Pu X, Zhang L. Durably dual superlyophobic cationic guar gum‑calcium complex decorated cellulose fabrics for on-demand oil/water separation. Int J Biol Macromol 2023; 248:125979. [PMID: 37499716 DOI: 10.1016/j.ijbiomac.2023.125979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The removal to oils from water has become a global issue because of the growing of wastewater discharge and unceasing appearance of oil leaks. Herein, a kind of durably dual superlyophobic (superhydrophobic under oil and superoleophobic under water) cotton fabric (CF) was fabricated via simple assembly route that introduced guar hydroxypropyltrimonium chloride‑calcium (GHTC-Ca) chelate compound on the fabric surface. The coated CF exhibits good resistance to mechanical abrasion, corrosive aqueous solution, high temperature, and organic solvent immersion. Furthermore, due to prewetting-caused superoleophobicity underwater and superhydrophobicity underoil, the as-prepared CF can selectively separate both heavy oils and light oils in water under extremely harsh conditions with separation efficiencies as high as 98.7 % and 98.4 %, respectively. More importantly, the as-prepared fabrics are able to remove dispersed oil droplets from oil-in-water emulsions and water droplets from water-in-oil emulsions with separation efficiency of over 89 % and 91.4 %, respectively. Hence, this prominent separation performance suggests a good application prospect of GHTC-Ca functionalized CF in oily water purification.
Collapse
Affiliation(s)
- Jintao Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Ankang University, Ankang 725000, PR China; College of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Xiaolong Pu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, PR China
| | - Lei Zhang
- School of Education, Ankang University, Ankang 725000, PR China
| |
Collapse
|
8
|
Gao Q, Bouwen D, Yuan S, Gui X, Xing Y, Zheng J, Ling H, Zhu Q, Wang Y, Depuydt S, Li J, Volodine A, Jin P, Van der Bruggen B. Robust loose nanofiltration membrane with fast solute transfer for dye/salt separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
You X, Wang M, Jiang G, Zhao X, Wang Z, Liu F, Zhao C, Qiu Z, Zhao R. Multifunctional porous nanofibrous membranes with superior antifouling properties for oil-water separation and photocatalytic degradation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Ilyas A, Vankelecom IFJ. Designing sustainable membrane-based water treatment via fouling control through membrane interface engineering and process developments. Adv Colloid Interface Sci 2023; 312:102834. [PMID: 36634445 DOI: 10.1016/j.cis.2023.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/05/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Membrane-based water treatment processes have been established as a powerful approach for clean water production. However, despite the significant advances made in terms of rejection and flux, provision of sustainable and energy-efficient water production is restricted by the inevitable issue of membrane fouling, known to be the major contributor to the elevated operating costs due to frequent chemical cleaning, increased transmembrane resistance, and deterioration of permeate flux. This review provides an overview of fouling control strategies in different membrane processes, such as microfiltration, ultrafiltration, membrane bioreactors, and desalination via reverse osmosis and forward osmosis. Insights into the recent advancements are discussed and efforts made in terms of membrane development, modules arrangement, process optimization, feed pretreatment, and fouling monitoring are highlighted to evaluate their overall impact in energy- and cost-effective water treatment. Major findings in four key aspects are presented, including membrane surface modification, modules design, process integration, and fouling monitoring. Among the above mentioned anti-fouling strategies, a large part of research has been focused on membrane surface modifications using a number of anti-fouling materials whereas much less research has been devoted to membrane module advancements and in-situ fouling monitoring and control. At the end, a critical analysis is provided for each anti-fouling strategy and a rationale framework is provided for design of efficient membranes and process for water treatment.
Collapse
Affiliation(s)
- Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
12
|
Xiang X, Chen D, Li N, Xu Q, Li H, He J, Lu J. PVDF/PLA electrospun fiber membrane impregnated with metal nanoparticles for emulsion separation, surface antimicrobial, and antifouling activities. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2023; 66:1461-1470. [PMID: 37153371 PMCID: PMC10127986 DOI: 10.1007/s11431-022-2325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/30/2023] [Indexed: 05/09/2023]
Abstract
Although many superwetting materials have been designed for the treatment of oil-containing wastewater, separation strategies for oil-in-water systems containing bacteria have rarely been reported. Herein, poly(vinylidene difluoride)- and poly(lactic acid)-blended fibrous membranes loaded with silver and copper oxide nanoparticles were successfully prepared by a two-step method of electrostatic spinning and liquid-phase synthesis. The product membrane showed excellent super-oleophilic properties in air and hydrophobicity under oil. It could separate water-in-oil emulsion systems containing surfactants with an efficiency above 90%. More importantly, the nanoparticle-loaded fibers were characterized by material degradability and slowly released ions. The fibers exhibited excellent antibacterial activities against both gram-positive and -negative bacteria. This work provides a feasible strategy for water-in-oil emulsion separation and bacterial treatment of wastewater.
Collapse
Affiliation(s)
- Xin Xiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - DongYun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - NaJun Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - QingFeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JingHui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| | - JianMei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
| |
Collapse
|
13
|
Bioinspired under-liquid superlyophobic PVDF membrane via synchronous in-situ growth of sliver nanoparticles for oil/water emulsion separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Sariipek FB, Gündoğdu Y, Kiliç HŞ. Fabrication of eco‐friendly superhydrophobic and superoleophilic
PHB‐SiO
2
bionanofiber membrane for gravity‐driven oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Fatma Bayram Sariipek
- Department of Chemical Engineering, Faculty of Engineering and Nature Konya Technical University Konya Türkiye
| | - Yasemin Gündoğdu
- Department of Computer Technologies, Kadınhanı Faik İçil Vocational High School Selçuk University Konya Türkiye
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
| | - Hamdi Şükür Kiliç
- Directorate of Laser Induced Proton Therapy Application and Research Center Selçuk University Konya Türkiye
- Department of Physics, Faculty of Science Selçuk University Konya Türkiye
| |
Collapse
|
15
|
Shakiba M, Abdouss M, Mazinani S, Reza Kalaee M. Super-hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic-assisted PANI in-situ polymerization for highly efficient gravity-driven oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aromatic hydrocarbons in water is one of the collateral effects of the petrochemical industry and represents a serious problem both for their toxicity and environmental contamination. In this work, an innovative amphiphilic membrane was developed capable of rapidly removing hydrocarbons (such as BTEX) present in water under the solubility limit. Firstly, a Janus nanostructured membrane was developed from the deposition of superhydrophobic carbonaceous nanoparticles (CNPs) synthesized by radiofrequency plasma polymerization on a hydrophilic electrospun poly(vinyl alcohol) mat. Secondly, this membrane was turned amphiphilic by UV exposure, allowing water to pass through. The surface properties of the membranes were studied through SEM, contact angle, and FTIR analysis. Dead-end experiments showed that the toluene and xylene selective sorption capacity reached the outstanding adsorption capacity of 647 mg/g and 666 mg/g, respectively, and that the membrane could be reused three times without efficiency loss. Furthermore, swelling of the PVA fibers prevented the liberation of NPs. The selective sorption capacity of the UV-exposed CNPs was explained by studying the interfacial energy relations between the materials at play. This work provides a simple, low-cost, and scalable technique to develop membranes with great potential for water remediation, including the removal of volatile organic compounds from produced water, as well as separating oil-in-water emulsions.
Collapse
|
17
|
Elizabeth Butler M, Jonathan Brant A. EMULSION SEPARATION AND FOULING OF ELECTROSPUN POLYACRYLONITRILE MEMBRANES FOR PRODUCED WATER APPLICATIONS. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Long X, Zhao GQ, Zheng Y, Hu J, Zuo Y, Zhang J, Jiao F. Porous and carboxyl functionalized titanium carbide MXene sheets for fast oil-in-water emulsion separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Yang Y, Guo Z, Li Y, Qing Y, Dansawad P, Wu H, Liang J, Li W. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil-water emulsions coalescence separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Wetting-induced superlyophobic polyacrylonitrile membranes: From reversible wettability to switchable on-demand emulsion separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Jin Y, Huang L, Zheng K, Zhou S. Blending Electrostatic Spinning Fabrication of Superhydrophilic/Underwater Superoleophobic Polysulfonamide/Polyvinylpyrrolidone Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8241-8251. [PMID: 35772102 DOI: 10.1021/acs.langmuir.2c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The scarcity of water resources has led to widespread interest in the treatment of oily wastewater. This study prepared a novel superhydrophilic/underwater superoleophobic polysulfonamide (PSA)/polyvinylpyrrolidone (PVP) nanofibrous membrane through electrostatic spinning for efficient oil-water emulsion separation. The surface morphology, fiber diameter distribution, wettability properties, and oil-water emulsion separation performance of the membranes were investigated. Results showed that the addition of PVP increases the diameter of the fibers, which led to a loose, large, porous structure and improved the permeability of the membranes. A high pure-water flux of 2057 L·m-2·h-1 was obtained for membranes with PVP addition of 3 wt%, providing an 835% increase in pure-water flux compared with a pure PSA nanofibrous membrane (220 L·m-2·h-1). For n-hexane-in-water emulsions, the optimum membrane obtained a high separation efficiency of 99.7%, in which flux was 1.5 times greater than that of the pure PSA nanofibrous membrane. Moreover, the optimum membrane exhibited good recycling stability and solvent resistance. The as-prepared PSA/PVP nanofibrous membrane displayed high permeability, an outstanding rejection rate, resistance to organic solvents, and reusability for oil-water separation, providing great potential in practical membrane separation applications.
Collapse
Affiliation(s)
- Yuting Jin
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Longwei Huang
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Zheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Shaoqi Zhou
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, PR China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
22
|
Wang Y, Zhou F, Wu Y, Dai L, Xu Z. High-Flux Nanofibrous Membranes with an Under-oil Superhydrophobic Surface Modulated by Zeolitic Imidazolate Framework-71 for Gravity-Driven Water-in-Oil Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yixing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fu Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Yao X, Hou X, Zhang R. Flexible and mechanically robust polyimide foam membranes with adjustable structure for separation and recovery of oil-water emulsions and heavy oils. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang F, Liu K, Xi Y, Li Z. One-step electrospinning PCL/ph-LPSQ nanofibrous membrane with excellent self-cleaning and oil-water separation performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Jiang G, Zhang C, Xie S, Wang X, Li W, Cai J, Lu F, Han Y, Ye X, Xue L. Facile Fabrication of Electrospun Nanofibrous Aerogels for Efficient Oil Absorption and Emulsified Oil-Water Separation. ACS OMEGA 2022; 7:6674-6681. [PMID: 35252662 PMCID: PMC8892654 DOI: 10.1021/acsomega.1c06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Developing superabsorbents for efficiently separating immiscible oil-water mixtures and oil-water emulsions are highly desirable for addressing oily wastewater pollution problems, but it remains a challenge. Ultralight nanofibrous aerogels (NFAs) with unique wetting properties show great potential in oily wastewater treatment. In this study, a facile and efficient method for producing hierarchical porous structured NFAs with hydrophobicity for high efficiency oil-water separation was developed. The synthesis included three steps: wet electrospinning, freeze drying, and in situ polymerization. The obtained NFA demonstrated outstanding oil absorption capacity toward numerous oils and organic solvents, as well as efficient surfactant-stabilized water-in-oil emulsion separation with high separation flux and excellent separation efficiency. Furthermore, these NFAs displayed excellent corrosion resistance and outstanding recoverability. We assume that the resultant NFAs fabricated by this facile strategy are highly promising as ideal oil absorbents for practical oily wastewater treatment under harsh conditions.
Collapse
Affiliation(s)
- Guojun Jiang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Caidan Zhang
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Sheng Xie
- Key
Laboratory of Yarn Materials Forming and Composite Processing Technology
of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaohong Wang
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Weiwei Li
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Jiajie Cai
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Fei Lu
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Yuhang Han
- Department
of Science, Zhijiang College of Zhejiang
University of Technology, Shaoxing 312000, China
| | - Xiangyu Ye
- Zhejiang
Light Industrial Products Inspection and Research Institute, Hangzhou 310020, China
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| | - Lixin Xue
- Center
for Membrane Separation and Water Science & Technology, College
of Chemical Engineering, Zhejiang University
of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Gurave PM, Nandan B, Srivastava RK. Emulsion templated dual crosslinked core-sheath fibrous matrices for efficient oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Yang Y, Guo Z, Li Y, Qing Y, Wang W, Ma Z, You S, Li W. Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Juraij K, Chingakham C, Manaf O, Sagitha P, Suni V, Sajith V, Sujith A. Polyurethane/multi‐walled carbon nanotube electrospun composite membrane for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kandiyil Juraij
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Chinglenthoiba Chingakham
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
- Department of Chemistry National University of Singapore Singapore Singapore
| | - Olongal Manaf
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Paroly Sagitha
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vasudevan Suni
- Inorganic and Bio‐inorganic Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vandana Sajith
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
| | - Athiyanathil Sujith
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
29
|
Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Wang J, Yu Z, Zhu X, Xiao X, Pang Y, Tan Q, Liu Y. A super-hydrophilic NH 2-MIL-125 composite film with dopamine-modified graphene oxide is used for water treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is always concerning about how to remove oil–water emulsions and dyes simultaneously and how to find a suitable separation film.
Collapse
Affiliation(s)
- Juan Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| | - Ximei Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xuehan Xiao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yao Pang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - QiuYue Tan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Southwest Petr Univ, Res Inst Ind Hazardous Waste Disposal & Resource, Chengdu 610500, Sichuan, P. R. China
| |
Collapse
|
31
|
Su R, Yu L, Li L, Chen D, Liu H, Fan X, Liu G, Ma R, An K, Yu Y. Biomimetic Janus membrane with unidirectional water transport ability for rapid oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Yang Y, Li Y, Cao L, Wang Y, Li L, Li W. Electrospun PVDF-SiO2 nanofibrous membranes with enhanced surface roughness for oil-water coalescence separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118726] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Effect of Membrane Materials and Operational Parameters on Performance and Energy Consumption of Oil/Water Emulsion Filtration. MEMBRANES 2021; 11:membranes11050370. [PMID: 34069360 PMCID: PMC8158739 DOI: 10.3390/membranes11050370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Membrane technology is one of reliable options for treatment of oil/water emulsion. It is highly attractive because of its effectiveness in separating fine oil droplets of <2 µm sizes, which is highly challenging for other processes. However, the progress for its widespread implementations is still highly restricted by membrane fouling. Most of the earlier studies have demonstrated the promise of achieving more sustained filtration via membrane material developments. This study addresses issues beyond membrane development by assessing the impact of membrane material (blend of polysulfone, PSF and polyethylene glycol, PEG), operational pressure, and crude oil concentration on the filtration performance of oil/water emulsion. The filtration data were then used to project the pumping energy for a full-scale system. Results show that fouling resistant membrane offered high oil/water emulsion permeability, which translated into a low energy consumption. The oil/water emulsion permeability was improved by three-fold from 45 ± 0 to 139 ± 1 L/(m2 h bar) for PSF/PEG-0 membrane in comparison to the most optimum one of PSF/PEG-60. It corresponded to an energy saving of up to ~66%. The pumping energy could further be reduced from 27.0 to 7.6 Wh/m3 by operation under ultra-low pressure from 0.2 to 0.05 bar. Sustainable permeability could be achieved when treating 1000 ppm oil/water emulsion, but severe membrane fouling was observed when treating emulsion containing crude oils of >3000 ppm to a point of no flux.
Collapse
|
34
|
Olkhov AA, Tyubaeva PM, Vetcher AA, Karpova SG, Kurnosov AS, Rogovina SZ, Iordanskii AL, Berlin AA. Aggressive Impacts Affecting the Biodegradable Ultrathin Fibers Based on Poly(3-Hydroxybutyrate), Polylactide and Their Blends: Water Sorption, Hydrolysis and Ozonolysis. Polymers (Basel) 2021; 13:polym13060941. [PMID: 33803794 PMCID: PMC8003206 DOI: 10.3390/polym13060941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022] Open
Abstract
Ultrathin electrospun fibers of pristine biopolyesters, poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA), as well as their blends, have been obtained and then explored after exposure to hydrolytic (phosphate buffer) and oxidative (ozone) media. All the fibers were obtained from a co-solvent, chloroform, by solution-mode electrospinning. The structure, morphology, and segmental dynamic behavior of the fibers have been determined by optical microscopy, SEM, ESR, and others. The isotherms of water absorption have been obtained and the deviation from linearity (the Henry low) was analyzed by the simplified model. For PHB-PLA fibers, the loss weight increments as the reaction on hydrolysis are symbate to water absorption capacity. It was shown that the ozonolysis of blend fibrils has a two-stage character which is typical for O3 consumption, namely, the pendant group's oxidation and the autodegradation of polymer molecules with chain rupturing. The first stage of ozonolysis has a quasi-zero-order reaction. A subsequent second reaction stage comprising the back-bone destruction has a reaction order that differs from the zero order. The fibrous blend PLA/PHB ratio affects the rate of hydrolysis and ozonolysis so that the fibers with prevalent content of PLA display poor resistance to degradation in aqueous and gaseous media.
Collapse
Affiliation(s)
- Anatoly A. Olkhov
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Polina M. Tyubaeva
- Department of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyanny Ln 36, 117997 Moscow, Russia; (A.A.O.); (P.M.T.)
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence:
| | - Svetlana G. Karpova
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Alexander S. Kurnosov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia; (S.G.K.); (A.S.K.)
| | - Svetlana Z. Rogovina
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| | - Alexander A. Berlin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119334 Moscow, Russia; (S.Z.R.); (A.L.I.); (A.A.B.)
| |
Collapse
|
35
|
Bahmani M, Zarghami S, Mohammadi T, Asadi AA, Khanlari S. PES
electrospun fibrous membrane for oily wastewater treatment: Fabrication condition optimization using response surface methodology. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marzieh Bahmani
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Soheil Zarghami
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| | - Amir Atabak Asadi
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
- Petroleum Refining Technology Development Division Research Institute of Petroleum Industry (RIPI) Tehran Iran
| | - Samaneh Khanlari
- Center of Excellence for Membrane Science and Technology, Department of Chemical, Petroleum and Gas Engineering Iran University of Science and Technology (IUST) Tehran Iran
- Research and Technology Centre of Membrane Separation Processes, School of Chemical, Petroleum and Gas Engineering Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|