Yang Z, Peng X, Zheng J, Wang Z. Plasma synthesis of oxygen vacancy-rich CuO/Cu
2(OH)
3NO
3 heterostructure nanosheets for boosting degradation performance.
Phys Chem Chem Phys 2023;
25:29108-29119. [PMID:
37869910 DOI:
10.1039/d3cp03918h]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Defect regulation and the construction of a heterojunction structure are effective strategies to improve the catalytic activity of catalysts. In this work, the rapid conversion of CuO to Cu2(OH)3NO3 was achieved by fixing nitrogen in air as NO3- using dielectric barrier discharge (DBD) plasma. This innovative approach resulted in the successful synthesis of a CuO/Cu2(OH)3NO3 nanosheet heterostructure. Notably, the samples prepared using plasma exhibit thinner thickness and larger specific surface area. Importantly, oxygen vacancies are introduced, simultaneously forming heterojunction interfaces within the CuO/Cu2(OH)3NO3 structure. CuO/Cu2(OH)3NO3 using plasma effectively degraded 96% of methyl orange within 8 min in the dark. The degradation rate is 81 and 23 times that of CuO and Cu2(OH)3NO3 using hydrothermal methods, respectively. The high catalytic activity is attributed to the large specific surface area, the abundance of active sites, and the synergy between oxygen vacancies and the strong heterojunction interfacial interactions, which accelerate the transfer of electrons and the production of reactive oxygen species (˙O2- and ˙OH). The mechanism of plasma preparation was proposed on account of microstructure characterization and online mass spectroscopy, which indicated that gas etching, gas expansion, and the repulsive force of electrons play key roles in plasma exfoliation.
Collapse