1
|
Kang J, Kwon O, Kim JP, Kim JY, Kim J, Cho Y, Kim DW. Graphene Membrane for Water-Related Environmental Application: A Comprehensive Review and Perspectives. ACS ENVIRONMENTAL AU 2025; 5:35-60. [PMID: 39830720 PMCID: PMC11741062 DOI: 10.1021/acsenvironau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 01/22/2025]
Abstract
Graphene-based materials can be potentially utilized for separation membranes due to their unique structural properties such as precise molecular sieving by interlayer spacing or pore structure and excellent stability in harsh environmental conditions. Therefore, graphene-based membranes have been extensively demonstrated for various water treatment applications, including desalination, water extraction, and rare metal ion recovery. While most of the utilization has still been limited to the laboratory scale, emerging studies have dealt with scalable approaches to show commercial feasibility. This review summarizes the recent studies on diverse graphene membrane fabrications and their environmental applications related to water-containing conditions in addition to the molecular separation mechanism and critical factors related to graphene membrane performance. Additionally, we discuss future perspectives and challenges to provide insights into the practical applications of graphene-based membranes on the industrial scale.
Collapse
Affiliation(s)
- Junhyeok Kang
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ohchan Kwon
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Jeong Pil Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yonghwi Cho
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dae Woo Kim
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Reddy PR, Anki Reddy K, Kumar A. Comparative Retention Analysis of Intercalated Cations Inside the Interlayer Gallery of Lamellar and Nonlamellar Graphene Oxide Membranes in Reverse Osmosis Process: A Molecular Dynamics Study. J Phys Chem B 2024; 128:5218-5227. [PMID: 38756068 DOI: 10.1021/acs.jpcb.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the past decade, multilayered graphene oxide (GO) membranes have emerged as promising candidates for desalination applications. Despite their potential, a comprehensive understanding of separation mechanisms remains elusive due to the intricate morphology and structural arrangement of interlayer galleries. Moreover, a critical concern of multilayered GO membranes is their susceptibility to swelling within aqueous environments, which hinders their practical implementation. Therefore, this study introduces cation intercalation within GO laminates to elucidate the underlying factors governing swelling behavior and subsequently mitigate it. Moreover, this study performed nonequilibrium molecular dynamics simulations on the cation (Mg2+ or K+)-intercalated lamellar and nonlamellar GO membranes to understand the effect of the arrangement of GO sheets on the retention time of intercalated cations within GO layers, water permeance, and salt rejection mechanism in the reverse osmosis process using cation-intercalated GO membranes. Our results highlight that lamellar GO membranes exhibit higher water permeance, attributed to their well-defined interlayer gallery structure. On the other hand, nonlamellar GO membranes display superior salt rejection due to their complex interlayer gallery structure that impedes salt permeation. Moreover, the structural complexity of nonlamellar GO membranes contributes to greater stability by retention of the more intercalated cations for a longer time within the layers. Furthermore, it is observed that a higher percentage of Mg2+ cations remained inside the GO laminates as compared to K+ cations, hence resulting in the greater stability of the Mg2+-intercalated GO membrane in the aqueous environment.
Collapse
Affiliation(s)
- P Rajasekhar Reddy
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, 517619 Andhra Pradesh, India
| | - Amit Kumar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| |
Collapse
|
3
|
Li Z, Xie W, Zhang Z, Wei S, Chen J, Li Z. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. Int J Biol Macromol 2023; 245:125524. [PMID: 37355070 DOI: 10.1016/j.ijbiomac.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Membrane technology is widely recognized as an efficient and advanced approach for wastewater treatment. However, the development of environmentally friendly and versatile membranes capable of effectively removing multiple contaminants remains a significant challenge. Inspired by natural magnets, we developed a heterostructured membrane using biomass materials to achieve the efficient removal of multiple contaminants from wastewater. Specifically, a bionic three-layer SA/GO/CS composite membrane was prepared by using sodium alginate (SA) and chitosan (CS) to modify graphene oxide (GO), respectively, and then assembled to both sides of the glass fiber (GF) membrane. The composite membranes achieved 99.87 % and 97.10 % removal of NPs with particle sizes of 500 nm and 50 nm. Moreover, the membrane demonstrated superior separation performance for mixed wastewater, enabling effective treatment of a broad spectrum of contaminants. Additionally, the membrane exhibited excellent stability when exposed to strong acid and alkali environments and demonstrated good recyclability throughout the multiple contaminants removal process. The bionic membrane, prepared using a straightforward method proposed in this study, provides an effective approach for enhanced removal of multiple contaminants in water. These findings contribute to the advancement of eco-friendly and versatile wastewater treatment membranes, opening new possibilities for sustainable water purification technologies.
Collapse
Affiliation(s)
- Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Wei Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Jiaqi Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
4
|
Ge R, Huo T, Gao Z, Li J, Zhan X. GO-Based Membranes for Desalination. MEMBRANES 2023; 13:220. [PMID: 36837724 PMCID: PMC9961078 DOI: 10.3390/membranes13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO), owing to its atomic thickness and tunable physicochemical properties, exhibits fascinating properties in membrane separation fields, especially in water treatment applications (due to unimpeded permeation of water through graphene-based membranes). Particularly, GO-based membranes used for desalination via pervaporation or nanofiltration have been widely investigated with respect to membrane design and preparation. However, the precise construction of transport pathways, facile fabrication of large-area GO-based membranes (GOMs), and robust stability in desalination applications are the main challenges restricting the industrial application of GOMs. This review summarizes the challenges and recent research and development of GOMs with respect to preparation methods, the regulation of GOM mass transfer pathways, desalination performance, and mass transport mechanisms. The review aims to provide an overview of the precise regulation methods of the horizontal and longitudinal mass transfer channels of GOMs, including GO reduction, interlayer cross-linking, intercalation with cations, polymers, or inorganic particles, etc., to clarify the relationship between the microstructure and desalination performance, which may provide some new insight regarding the structural design of high-performance GOMs. Based on the above analysis, the future and development of GOMs are proposed.
Collapse
Affiliation(s)
- Rui Ge
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Teng Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongyong Gao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jiding Li
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xia Zhan
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Surface engineering of graphene oxide membranes for selective separation of perfluorooctanoic acids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Zhang G, Lin L, Shen W, Wang X, Wang Y, Cao L, Liu F. A New Strategy for Highly Efficient Separation between Monovalent Cations by Applying Opposite-Oriented Pressure and Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203396. [PMID: 35906891 DOI: 10.1002/smll.202203396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Biological ion channels exhibit excellent ion selectivity, but it has been challenging to design their artificial counterparts, especially for highly efficient separation of similar ions. Here, a new strategy to achieve high selectivity between alkali metal ions with artificial nanostructures is reported. Molecular dynamics (MD) simulations and experiments are combined to study the transportation of monovalent cations through graphene oxide (GO) nanoslits by applying pressure or/and electric fields. It is found that the ionic transport selectivity under the pressure driving reverses compared with that under the electric field driving. Moreover, MD simulations show that different monovalent cations can be separated with unprecedentedly high selectivity by applying opposite-oriented pressure and electric fields. This highly efficient separation originates from two distinctive ionic transporting modes, that is, hydration shells drive ions under pressure, but drag ions under the electric field. Hence, ions with different hydration strengths can be efficiently separated by tuning the net mobility induced by the two types of driving forces when the selected ions are kept moving while the other ones are immobilized. And nanoconfinement is confirmed to enhance the separation efficacy. This discovery paves a new avenue for separating similar ions without elaborately designing biomimetic nanostructures.
Collapse
Affiliation(s)
- Gehui Zhang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Lingxin Lin
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenhao Shen
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Xue Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
7
|
Chen Y, Yang X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Effective Antiscaling Performance of ACTF/Nylon 6, 12 Nanofiltration Composite Membrane: Adsorption, Membrane Performance, and Antifouling Property. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Li Y, Jiao J, Wu Q, Song Q, Xie W, Liu B. Environmental applications of graphene oxide composite membranes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Meng W, Li N, Min C, Shi J, Zhu B, Liu L, Liu S, Shao R, Xu Z, Cai Z. Conferring doorman characteristic and superior nano-scratch stability to graphene oxide membranes via tailoring channel microenvironment. NEW J CHEM 2022. [DOI: 10.1039/d2nj03270h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide (GO) membranes with doorman characteristic, tunable nanochannel microenvironment and high interfacial adhesion were fabricated.
Collapse
Affiliation(s)
- Wenting Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Nan Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chunying Min
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bo Zhu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liangsen Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shengkai Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ruiqi Shao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhijiang Cai
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
11
|
Graphene oxide membranes tuned by metal-phytic acid coordination complex for butanol dehydration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Khan NA, Wu H, Jinqiu Y, Mengyuan W, Yang P, Long M, Rahman AU, Ahmad NM, Zhang R, Jiang Z. Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Kim TN, Lee J, Choi JH, Ahn JH, Yang E, Hwang MH, Chae KJ. Tunable atomic level surface functionalization of a multi-layered graphene oxide membrane to break the permeability-selectivity trade-off in salt removal of brackish water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|