1
|
Kongasseri A, Madhesan T, Krishna Kumar S, Pedugu Sivaraman S, Mitra S, Kancharlapalli Chinaraga P, Rao CVSB, Nagarajan S, Deivasigamani P, Mohan AM. Amide-decorated reusable C 18 silica-packed columns for the rapid, efficient and sequential separation of lanthanoids using reversed phase-high performance liquid chromatography. J Chromatogr A 2024; 1713:464509. [PMID: 37980811 DOI: 10.1016/j.chroma.2023.464509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The current work focuses on the sequential separation of trivalent lanthanides (except Pm3+) using modified C18 silica-packed supports through the reversed-phase high-performance liquid chromatography (RP-HPLC) technique. In the current research, four indigenously synthesized amphiphilic aromatic triamide derivatives, namely N1, N1, N3, N3, N5, N5-hexa(alkyl) benzene-1,3,5-tri carboxamide (alkyl = butyl, hexyl, octyl, and decyl), were employed as column modifiers. The results show that the separation of Ln3+ can be achieved systematically (< 12 min) by tuning the modifiers' functional group and hydrophobic chain and fine-tuning the column modification procedure and separation parameters. The chromatographic studies revealed that the use of 0.168 mmol of N1, N1, N3, N3,N5, N5-hexa(hexyl)benzene-1,3,5-tricarboxamide (HHBTA) coated column and 0.419 mmol of N1, N1, N3, N3, N5, N5-hexa(octyl) benzene-1,3,5-tricarboxamide (HOBTA) modified columns offered excellent separation for the lanthanoids, using 0.1 M α-hydroxyisobutyric acid (HIBA), as mobile phase. The separated lanthanoids were quantified by post-column derivatization reaction (after the separation process) using Arsenazo (III) as the post-column reagent by integrating with a UV-Visible detector fixed at 655 nm (λmax). A systematic study on the influence of various analytical features, such as the effect of the modifier's chain length and its concentration, mobile phase composition and pH, was performed and optimized for achieving the best separation protocols.
Collapse
Affiliation(s)
- Aswanidevi Kongasseri
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Thirumalai Madhesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sangeetha Krishna Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Sushmitha Pedugu Sivaraman
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Suchashrita Mitra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | | | - C V S Brahmmananda Rao
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Sivaraman Nagarajan
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute (HBNI), Kalpakkam, Tamil Nadu 603102, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Akhila Maheswari Mohan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Wang J, Hou YC, Guo YR, Wang XY, Ding SD, Pan QJ. Tuning the Alkyl Chain of Nitrilotriacetamide for Selectively Extracting Trivalent Am over Eu Ions. Inorg Chem 2023. [PMID: 37377386 DOI: 10.1021/acs.inorgchem.3c01297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The successful management and safe disposal of high-level nuclear waste necessitate the efficient separation of actinides (An) from lanthanides (Ln), which has emerged as a crucial prerequisite. Mixed donor ligands incorporating both soft and hard donor atoms have garnered interest in the field of An/Ln separation and purification. One such example is nitrilotriacetamide (NTAamide) derivatives, which have demonstrated selectivity in extracting minor actinide Am(III) ions over Eu(III) ions. Nevertheless, the Am/Eu complexation behavior and selectivity remain underexplored. In the work, a comprehensive and systematic investigation has been conducted for [M(RL)(NO3)3] complexes (M = Am and Eu) utilizing relativistic density functional theory. The NTAamide ligand (RL) is substituted with various alkyl groups, namely, methyl, ethyl, propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl. Thermodynamic calculations show that the alkyl chain length in NTAamide is capable of tuning the separation selectivity of Am and Eu. Moreover, the differences in calculated free energies between Am and Eu complexes are more negative for R = Bu-Oct than Me-Pr. This indicates that elongation of the alkyl chain can increase the efficiency of selective separation of Am(III) from Eu(III). Based on the quantum theory of atoms in molecules and charge decomposition analyses, it has been observed that the strength of Am-RL bonds is higher than that of Eu-RL bonds. This disparity is attributed to a greater degree of covalency in Am-RL bonds and a higher level of charge transfer from ligands to Am within complexes containing these bonds. Energies of occupied orbitals with the central N character are recognized overall lower for [Am(OctL)(NO3)3] than for [Eu(OctL)(NO3)3], indicative of stronger complexation stability of the former. These results offer valuable insights into the separation mechanism of NTAamide ligands, which can help guide the development of more powerful agents for An/Ln separation in future applications.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yu-Chang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xue-Yu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song-Dong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Wang X, Song L, Yu Q, Li Q, He L, Xiao X, Pan Q, Yang Y, Ding S. Complexation of a Nitrilotriacetate-Derived Triamide Ligand with Trivalent Lanthanides: A Thermodynamic and Crystallographic Study. Inorg Chem 2023; 62:3916-3928. [PMID: 36821293 DOI: 10.1021/acs.inorgchem.2c04311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Non-heterocyclic N-donor nitrilotriacetate-derived triamide ligands are one of the most promising extractants for the selective extraction separation of trivalent actinides over lanthanides, but the thermodynamics and mechanism of the complexation of this kind of ligand with actinides and lanthanides are still not clear. In this work, the complexation behaviors of N,N,N',N',N″,N″-hexaethylnitrilotriacetamide (NTAamide(Et)) with four representative trivalent lanthanides (La3+, Nd3+, Eu3+, and Lu3+) were systematically investigated by using 1H nuclear magnetic resonance (1H NMR), ultraviolet-visible (UV-vis) and fluorescence spectrophotometry, microcalorimetry, and single-crystal X-ray diffractometry. 1H NMR spectroscopic titration of La3+ and Lu3+ indicates that two species of 1:2 and 1:1 metal-ligand complexes were formed in NO3- and ClO4- media. The stability constants of NTAamide(Et) with Nd3+ and Eu3+ obtained by UV-vis and fluorescence titration show that the complexing strength of NTAamide(Et) with Nd3+ is lower than that with Eu3+ in the same anionic medium, while that of the same lanthanide complex is higher in ClO4- medium than in NO3- medium. Meanwhile, the formation reactions for all metal-ligand complexes are driven by both enthalpy and entropy. The structures of lanthanide complexes in the single ClO4- and NO3- medium and the mixed one were determined to be [LnL2(MeOH)](ClO4)3 (Ln = La, Nd, Eu, and Lu), [LaL2(EtOH)2][La(NO3)6], and [LaL2(NO3)](ClO4)2, separately. The average bond lengths of lanthanide complexes decrease gradually with the decrease in ionic radii of Ln3+, indicating that heavier lanthanides form stronger complexes due to the lanthanide contraction effect, which coincides with the trend of the complexing strength obtained by spectroscopic titration. This work not only reveals the thermodynamics and mechanism of the complexation between NTAamide ligands and lanthanides but also obtains the periodic tendency of complexation between them, which may facilitate the separation of trivalent lanthanides from actinides.
Collapse
Affiliation(s)
- Xueyu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lianjun Song
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiao Yu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiuju Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lanlan He
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qingjiang Pan
- School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, P. R. China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
4
|
Wang YL, Li FF, Xiao Z, Wang CZ, Liu Y, Shi WQ, He H. Experimental and theoretical studies on the extraction behavior of Cf(iii) by NTAamide(C8) ligand and the separation of Cf(iii)/Cm(iii). RSC Adv 2023; 13:3781-3791. [PMID: 36756586 PMCID: PMC9890634 DOI: 10.1039/d2ra07660h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
In this work we studied the extraction behaviors of Cf(iii) by NTAamide (N,N,N',N',N'',N''-hexaocactyl-nitrilotriacetamide, C8) in nitric acid medium. Influencing factors such as contact time, concentration of NTAamide(C8), HNO3 and NO3 - as well as temperature were considered. The slope analysis showed that Cf(iii) should be coordinated in the form of neutral molecules, and the extraction complex should be Cf(NO3)3·2L (L = NTAamide(C8)), which can achieve better extraction effect under the low acidity condition. When the concentration of HNO3 was 0.1 mol L-1, the separation factor (SFCf/Cm) was 3.34. The extractant has application prospect to differentiate the trivalent Cf(iii) and Cm(iii) when the concentration of nitric acid is low. On the other hand, density functional theory (DFT) calculations were conducted to explore the coordination mechanism of NTAamide(C8) ligands with Cf/Cm cations. The NTAamide(C8) complexes of Cf(iii)/Cm(iii) have similar geometric structures, and An(iii) is more likely to form a complex with 1 : 2 stoichiometry (metal ion/ligands). In addition, bonding property and thermodynamics analyses showed that NTAamide(C8) ligands had stronger coordination ability with Cf(iii) over Cm(iii). Our work provides meaningful information with regard to the in-group separation of An(iii) in practical systems.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Feng-Feng Li
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Zhe Xiao
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui He
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| |
Collapse
|
5
|
Wang X, Song L, Li L, Wang Z, Li Q, He L, Huang X, Ding S. Extraction and Complexation Investigation of Palladium(II) by a Nitrilotriacetate-Derived Triamide Ligand. Inorg Chem 2022; 61:13293-13305. [PMID: 35977422 DOI: 10.1021/acs.inorgchem.2c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective and selective separation and recovery of the fission product palladium from high-level liquid waste are conducive not only to reducing its hazards to the public health and environment but also to alleviate the pressure on the increasing demand for natural palladium. Herein, the Pd2+ extraction in an HNO3 solution with a nitrilotriacetate-derived triamide ligand NTAamide(n-Oct) and the complexation between them were investigated. Using n-octanol as a diluent, NTAamide(n-Oct) demonstrated an excellent selectivity, strong extractability, and high loading capacity for Pd2+ extraction. Combined with the results of single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, electrospray ionization-mass spectroscopy, microcalorimetric titration, and slope analysis, the extracted complexes were determined as [PdL2](NO3)2 and [PdL2][Pd(NO3)4] (where L denotes the NTAamide ligand) in 0.10 and 3.0 mol/L HNO3 solutions, respectively. The extraction model closely depended on the solvation state of Pd2+ in the HNO3 solution. An ion-pair extraction model was proposed and discussed.
Collapse
Affiliation(s)
- Xueyu Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lianjun Song
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Long Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhuang Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiuju Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lanlan He
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xuanhao Huang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Songdong Ding
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Ebenezer C, Solomon RV. Uptake of Am(III) Ions and Eu(III) Ions Using Cyclic Substituted N, O‐hybrid 1,10‐Phenanthroline Derived Phosphine Oxide Ligands ‐ A DFT Exploration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| |
Collapse
|
7
|
Ye ZR, Wu QY, Wang CZ, Lan JH, Chai ZF, Wang HQ, Shi WQ. Theoretical Insights into the Separation of Am(III)/Eu(III) by Hydrophilic Sulfonated Ligands. Inorg Chem 2021; 60:16409-16419. [PMID: 34632757 DOI: 10.1021/acs.inorgchem.1c02256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we focused on the separation of Am(III)/Eu(III) with four hydrophilic sulfonated ligands (L) based on the framework of phenanthroline and bipyridine through scalar relativistic density functional theory. We studied the electronic structures of [ML(NO3)3] (M = Am, Eu) complexes and the bonding nature between metal and ligands as well as evaluated the separation selectivity of Am(III)/Eu(III). The tetrasulfonated ligand L2 with a bipyridine framework has the strongest complexing ability for metal ions probably because of the better solubility and flexible skeleton. The disulfonated ligand L1 has the highest Am(III)/Eu(III) selectivity, which is attributed to the covalent difference between the Am-N and Eu-N bonds based on the quantum theory of atoms in the molecule analysis. Thermodynamic analysis shows that the four hydrophilic sulfonated ligands are more selective toward Am(III) over Eu(III). In addition, these hydrophilic sulfonated ligands show better complexing ability and Am(III)/Eu(III) selectivity compared to the corresponding hydrophobic nonsulfonated ones. This work provides theoretical support for the separation of Am(III)/Eu(III) using hydrophilic sulfonated ligands.
Collapse
Affiliation(s)
- Zi-Rong Ye
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Yang XF, Ren P, Yang Q, Geng JS, Zhang JY, Yuan LY, Tang HB, Chai ZF, Shi WQ. Strong Periodic Tendency of Trivalent Lanthanides Coordinated with a Phenanthroline-Based Ligand: Cascade Countercurrent Extraction, Spectroscopy, and Crystallography. Inorg Chem 2021; 60:9745-9756. [PMID: 34115461 DOI: 10.1021/acs.inorgchem.1c01035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenanthroline-diamide ligands have been reported in the selective separation of actinides over Eu(III); on the contrary, relevant basic coordination chemistry studies are still limited, and extraction under actual application conditions is rarely involved. In this work, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline [Et-Tol-DAPhen (L)] was applied to explore the coordination performance of lanthanides in simulative high-level liquid waste. For the first time, cascade countercurrent extraction was conducted with Et-Tol-DAPhen as the extractant, which reveals the periodic tendency of the extraction efficiency of lanthanides to decrease gradually as the atomic number increases. Comparison of elements with similar radii verifies the hypothesis that the increase in the atomic number leads to a decrease in the ionic radius, thus reducing the coordination and extraction capacity of ligands. Slope analysis, electrospray ionization mass spectrometry, and ultraviolet-visible titration results show that the ligand forms 1:1 and 1:2 complexes with lanthanides and the coordination ability follows the tendency of extraction efficiency, and the first crystal structures of Lns(III) with a phenanthroline-diamide ligand, i.e., [LaL(NO3)3(H2O)] and [LaL2(NO3)2][(NO3)], were obtained, which confirms the conclusions described above. This work promises to enhance our comprehension of the chemical properties of Lns(III) and offer new clues for the design and synthesis of novel separation ligands.
Collapse
Affiliation(s)
- Xiao-Fan Yang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Peng Ren
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,School of Nuclear Science and Engineering, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Qi Yang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Jun-Shan Geng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Yu Zhang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Bin Tang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineer Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|