1
|
Tripathi G, Pandey VK, Ahmad S, Irum, Khujamshukurov NA, Farooqui A, Mishra V. Utilizing novel Aspergillus species for bio-flocculation: A cost-effective approach to harvest Scenedesmus microalgae for biofuel production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100272. [PMID: 39296489 PMCID: PMC11408997 DOI: 10.1016/j.crmicr.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
The present study aimed to isolate a bioflocculating fungal strain from wastewater collected from a local bike garage. The isolate showed maximum similarity to Aspergillus species. The fungus was identified as Aspergillus flavus species F_GTAF1 IU (accession no OP703382). The isolated fungus was evaluated in terms of biomass recovery efficiency in Scenedesmus Sp. GTAF01. The extent of algal fungal co-pelletization was evaluated as a function of the algae-to-fungi ratio, volume of fungal culture in broth, agitation rate, and pH. results showed that at fungal culture volume of 60 ░ %v/v, fungal culture volume of 1:3 ░ %w/w, 100 rpm, and pH 3, 93.6 ░ % biomass was obtained during the initial 5 h. At wavenumbers 1384 and 1024 cm-1 a significant alteration in the transmission percentage was observed in co-pellet compared to algae and fungal cells. This shows the significant role of C-H-H and C-N stretches in co-pellet formation. This study provides deep insight into effective microalgal harvesting along with the simultaneous extraction of lipids that can be used for the sustainable production of biodiesel.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Irum
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | | | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU) Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Kaszecki E, Palberg D, Grant M, Griffin S, Dhanjal C, Capperauld M, Emery RJN, Saville BJ. Euglena mutabilis exists in a FAB consortium with microbes that enhance cadmium tolerance. Int Microbiol 2024; 27:1249-1268. [PMID: 38167969 PMCID: PMC11300505 DOI: 10.1007/s10123-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature. The photosynthetic protist Euglena mutabilis is often found in association with other microbes in acidic environments with high heavy metal (HM) concentrations. This may suggest that microbial interactions are essential for the protist's ability to tolerate these extreme environments. Our study assessed the Cd tolerance of a natural fungal-algal-bacterial (FAB) association whereby the algae is E. mutabilis. RESULTS This study provides the first assessment of antibiotic and antimycotic agents on an E. mutabilis culture. The results indicate that antibiotic and antimycotic applications significantly decreased the viability of E. mutabilis cells when they were also exposed to Cd. Similar antibiotic treatments of E. gracilis cultures had variable or non-significant impacts on Cd tolerance. E. gracilis also recovered better after pre-treatment with antibiotics and Cd than did E. mutabilis. The recoveries were assessed by heterotrophic growth without antibiotics or Cd. In contrast, both Euglena species displayed increased chlorophyll production upon Cd exposure. PacBio full-length amplicon sequencing and targeted Sanger sequencing identified the microbial species present in the E. mutabilis culture to be the fungus Talaromyces sp. and the bacterium Acidiphilium acidophilum. CONCLUSION This study uncovers a possible fungal, algal, and bacterial relationship, what we refer to as a FAB consortium. The members of this consortium interact to enhance the response to Cd exposure. This results in a E. mutabilis culture that has a higher tolerance to Cd than the axenic E. gracilis. The description of this interaction provides a basis for explore the benefits of natural interactions. This will provide knowledge and direction for use when creating or maintaining FAB interactions for biotechnological purposes, including bioremediation.
Collapse
Affiliation(s)
- Emma Kaszecki
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Daniel Palberg
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Mikaella Grant
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
| | - Sarah Griffin
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Chetan Dhanjal
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - R J Neil Emery
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Science Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
3
|
Radmehr S, Kallioinen-Mänttäri M, Mänttäri M. Interplay role of microalgae and bio-carriers in hybrid membrane bioreactors on wastewater treatment, membrane fouling, and microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122764. [PMID: 37852316 DOI: 10.1016/j.envpol.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Algal membrane bioreactors (algae-MBRs) and advanced hybrid biocarrier algal membrane bioreactors (hybrid algae-MBRs) have been investigated to improve the performance of conventional MBRs (C-MBRs). Maximum chemical oxygen demand and nutrient removal efficiencies, similar to the maximum biomass growth rate, chlorophyll-a concentration, and balanced microbial growth, were achieved in the hybrid algae-MBR inoculated with polyethylene biocarriers and algal cells. During the 90 days of operation, the hybrid algae-MBR demonstrated lower membrane fouling without membrane washing, whereas the C-MBR and algae-MBR were washed seven and four times, respectively. Compared to the C-MBR, both the algal MBR and hybrid algal MBR exhibited higher levels of nitrification, with 6 and 10 % greater rates, respectively. In addition, they displayed significant improvements in ammonium biomass uptake compared to the C-MBR, with increases of 30 and 37 %, respectively. In the algae-MBR, the chlorophyll-a results showed proliferation of algae over time. However, biocarriers that provide an additional surface for microbial growth, particularly algal strains, inhibit algal proliferation and result in balanced microbial growth (based on chlorophyll-a/MLVSS) in the bulk solution of the hybrid algae-MBR. In addition, the oxygen mass balance estimated that photosynthesis provided 45 % of the dissolved oxygen required in the studied algal reactors, whereas mixing provided the remainder. Additionally, microbial sequencing results indicated that the microbial communities (e.g., Candidatus, Cloacibacterium, and Falavobacterium) were altered by introducing microalgae and biocarriers that affected the activity of different microorganisms, changed the sludge and fouling layer properties, and improved the performance of the C-MBRs.
Collapse
Affiliation(s)
- Shahla Radmehr
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland.
| | - Mari Kallioinen-Mänttäri
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland
| | - Mika Mänttäri
- Department of Separation and Purification Technology, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, Lappeenranta, FIN-53851, Finland, Finland
| |
Collapse
|
4
|
Shitanaka T, Higa L, Bryson AE, Bertucci C, Vande Pol N, Lucker B, Khanal SK, Bonito G, Du ZY. Flocculation of oleaginous green algae with Mortierella alpina fungi. BIORESOURCE TECHNOLOGY 2023; 385:129391. [PMID: 37364649 DOI: 10.1016/j.biortech.2023.129391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Microalgae are promising sources of valuable bioproducts such as biofuels, food, and nutraceuticals. However, harvesting microalgae is challenging due to their small size and low biomass concentrations. To address this challenge, bio-flocculation of starchless mutants of Chlamydomonas reinhardtii (sta6/sta7) was investigated with Mortierella alpina, an oleaginous fungus with high concentrations of arachidonic acid (ARA). Triacylglycerides (TAG) reached 85 % of total lipids in sta6 and sta7 through a nitrogen regime. Scanning electron microscopy determined cell-wall attachment and extra polymeric substances (EPS) to be responsible for flocculation. An algal-fungal biomass ratio around 1:1 (three membranes) was optimal for bio-flocculation (80-85 % flocculation efficiency in 24 h). Nitrogen-deprived sta6/sta7 were flocculated with strains of M. alpina (NVP17b, NVP47, and NVP153) with aggregates exhibiting fatty acid profiles similar to C. reinhardtii, with ARA (3-10 % of total fatty acids). This study showcases M. alpina as a strong bio-flocculation candidate for microalgae and advances a mechanistic understanding of algal-fungal interaction.
Collapse
Affiliation(s)
- Ty Shitanaka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Lauren Higa
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Abigail E Bryson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Conor Bertucci
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Natalie Vande Pol
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Ben Lucker
- Trait Biosciences, Los Alamos, NM 87544, United States
| | - Samir Kumar Khanal
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
5
|
Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
6
|
Zhang C, Laipan M, Zhang L, Yu S, Li Y, Guo J. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(II) adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130105. [PMID: 36206717 DOI: 10.1016/j.jhazmat.2022.130105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Using filamentous fungi to capture unicellular microalgae is an effective way for microalgae recovery in water treatment. Here, fungi Aspergillus flavus ZJ-1 and microalgae Chlorella vulgaris WZ-1 isolated from a copper tailings pond were used to study the capture effect of ZJ-1 on WZ-1. The highest capture efficiency (97.85%) was obtained within 6 h under the optimized conditions of 30 °C, 150 rpm, fungi-algae biomass ratio of 2.24:1, and initial pH of 9.24 in microalgae medium. The formed fungi-algae pellets (FAPs) were further used to remove Cu(II) from aqueous solution. Results showed that the FAPs formed at different capture times all adsorbed Cu(II) well, and the PAFs formed within 2 h (PAFs2 h) exhibited the highest Cu(II) adsorption capacity (80.42 mg·g-1). SEM images showed that Cu(II) caused a change in the internal structure of PAFs2 h from loose to compact, the mycelium shrunk, and the microalgal cells were concave. Cu(II) adsorption by PAFs2 h was well conformed to the pseudo-second-order kinetics and the Langmuir isotherm (123.61 mg·g-1 of theoretically maximum adsorption capacity). This work opens a way for applying FAPs in the remediation of heavy metal-contaminated wastewater, and the metal adsorption effect was determined by the capture amount of microalgae.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
7
|
Transformation of Enzymatic Hydrolysates of Chlorella–Fungus Mixed Biomass into Poly(hydroxyalkanoates). Catalysts 2023. [DOI: 10.3390/catal13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The production of poly(hydroxylalkanoates) (PHA) is limited by the high cost of the feedstock since various biomass wastes look attractive as possible sources for polymer production. The originality of this present study is in the biotransformation of mixed Chlorella-based substrates into PHAs. The synthetic potential of Cupriavidus necator B8619 cells was studied during the bioconversion of algae biomass in mixtures with spent immobilized mycelium of different fungi (genus Rhizopus and Aspergillus) into PHAs. The biomass of both microalgae Chlorella and fungus cells was accumulated due to the use of the microorganisms in the processes of food wastewater treatment. The biosorption of Chlorella cells by fungal mycelium was carried out to obtain mixed biomass samples (the best ratio of “microalgae:fungi” was 2:1) to convert them by C. necator B8619 into the PHA. The influence of conditions used for the pretreatment of microalgae and mixed types of biomass on their conversion to PHA was estimated. It was found that the maximum yield of reducing sugars (39.4 ± 1.8 g/L) can be obtained from the mechanical destruction of cells by using further enzymatic hydrolysis. The effective use of the enzymatic complex was revealed for the hydrolytic disintegration of treated biomass. The rate of the conversion of mixed substrates into the biopolymer (440 ± 13 mg/L/h) appeared significantly higher compared to similar known examples of complex substrates used for C. necator cells.
Collapse
|
8
|
Takáčová A, Bajuszová M, Šimonovičová A, Šutý Š, Nosalj S. Biocoagulation of Dried Algae Chlorella sp. and Pellets of Aspergillus Niger in Decontamination Process of Wastewater, as a Presumed Source of Biofuel. J Fungi (Basel) 2022; 8:jof8121282. [PMID: 36547615 PMCID: PMC9783253 DOI: 10.3390/jof8121282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The removal of microalgae represents a problematic part of the water decontamination process, in which most techniques are expensive and non-ecological. In the paper, we focus on the synergistic relationship between microscopic filamentous fungi and algal culture. In the process of decontamination of a model sample containing ammonium ions, efficient biocoagulation, resp. co-pelletization of dried algae Chlorella sp. and Aspergillus niger sensu stricto are shown. The microscopic filamentous fungus species A. niger was added to a culture of an algal suspension of Chlorella sp., where the adhesion of the algal cells to the fungi subsequently occurred due to the electrostatic effect of the interaction, while the flocculation activity was approximately 70 to 80%. The algal cells adhered to the surface of the A. niger pellets, making them easily removable from the solution. The ability of filamentous fungi to capture organisms represents a great potential for the biological isolation of microalgae (biocoagulation) from production solutions because microalgae are considered to be a promising renewable source of oil and fermentables for bioenergy. This form of algae removal, or its harvesting, also represents a great low-cost method for collecting algae not only as a way of removing unnecessary material but also for the purpose of producing biofuels. Algae are a robust bioabsorbent for absorbing lipids from the environment, which after treatment can be used as a component of biodiesel. Chemical analyses also presented potential ecological innovation in the area of biofuel production. Energy-efficient and eco-friendly harvesting techniques are crucial to improving the economic viability of algal biofuel production.
Collapse
Affiliation(s)
- Alžbeta Takáčová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Science, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Miriama Bajuszová
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Science, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Science, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Štefan Šutý
- Department of Wood, Pulp and Paper, Faculty of Chemical and Food Technology STU, Vazovová 5, 81243 Bratislava, Slovakia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Science, Comenius University, Ilkovičova 6, 84215 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
9
|
Nie Y, Wang Z, Wang W, Zhou Z, Kong Y, Ma J. Bio-flocculation of Microcystis aeruginosa by using fungal pellets of Aspergillus oryzae: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129606. [PMID: 35863225 DOI: 10.1016/j.jhazmat.2022.129606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms caused by eutrophication are global phenomena that seriously threaten the sustainable use of freshwater resources. Traditional water treatment chemicals often typically lead to high levels of residue and cause damage to the morphology of algal cells. This study investigated an eco-friendly fungal bio-flocculant, Aspergillus oryzae, to remove the representative microalgae (Microcystis aeruginosa). Furthermore, it explored crucial flocculation parameters, adsorption kinetics, and thermodynamics of microalgae using A. oryzae. Accordingly, a flocculation efficiency of >95% was achieved when the fungus was cultured for six days, flocculant dosage was 11 g/L, rotation speed was 100 rpm, temperature was 25 °C, flocculation time was 5 h, and pH ranged between 4.0 and 9.0. KEGG analysis based on the genomic data, and chemical composition analysis revealed that proteins and polysaccharides were the major components of metabolites. Zeta potential analysis, scanning electron microscopy, three-dimensional fluorescence, X-ray spectroscopy, and infrared spectroscopy, electrostatic attraction revealed that electrostatic attraction promoted the destabilization and aggregation of microalgae. Additionally, hyphal surface adsorption and chemisorption from extracellular proteins and exopolysaccharides aided in the removal of microalgae. Therefore, fungi-based bio-flocculants have the potential to remove microalgae in a simple, effective, and eco-friendly manner without the complex extraction of extracellular metabolites.
Collapse
Affiliation(s)
- Yong Nie
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Zimin Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhengyu Zhou
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yanli Kong
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Jiangya Ma
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| |
Collapse
|
10
|
Gong X, Wang Y, Huang D, Zhang J. Effects of microplastics of different sizes on the Chlorella vulgaris - Ganoderma lucidum co-pellets formation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153266. [PMID: 35074383 DOI: 10.1016/j.scitotenv.2022.153266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
The effects of different sized MPs on the formation process of algal-fungal co-pellets were studied. The results show that a maximum biomass recovery of 70.96% and a minimum Fv/Fm ratio of 0.463 reached with 5.000 μm-microplastics. Chlorella vulgaris cells and microplastics adhered evenly to the mycelia of Ganoderma lucidum. The contact angle decreased 24.02% and 34.68% with addition of 0.065 μm and 0.500 μm microplastics, respectively, compared to the control group, while the lowest crystallinity index (7.05%) was obtained with 0.065 μm-microplastics addition. Moreover, 5.000 μm microplastics promoted the extracellular polymeric substances (EPS) secretion, with the soluble polysaccharide content increasing by 40.50% and the soluble protein content increasing by 23.25% compared with the single algal-fungal system, while bound polysaccharides increased by 113.26% and bound proteins increased by 29.48%. The 5.000 μm microplastics also significantly promoted enzyme activity in the co-pellets. These results provide a theoretical basis for algal recovery in microplastic-containing water.
Collapse
Affiliation(s)
- Xinye Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yu Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
11
|
Nie Y, Wang Z, Zhang R, Ma J, Zhang H, Li S, Li J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Leng L, Li W, Chen J, Leng S, Chen J, Wei L, Peng H, Li J, Zhou W, Huang H. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2021; 330:125008. [PMID: 33773267 DOI: 10.1016/j.biortech.2021.125008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wenting Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jie Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Songqi Leng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jiefeng Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liang Wei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|