1
|
Hu C, Guo W, Zhen S, Li Y, Huang C, Zhan L. Bimetallic Ag/Fe-MOG derived flake-like Ag 2O/Fe 2O 3 p-n heterojunction for efficient photodegradation organic pollutants within a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121686. [PMID: 38971057 DOI: 10.1016/j.jenvman.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wan Guo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
2
|
Zhao Y, Yu P, Wang J. Chlorine-Modified Soluble Melem-Based Graphitic Carbon Nitrite: Facile Synthesis, Catalytic Property and Ultrafast 2D IR Spectroscopic Characterization. Chemphyschem 2024:e202400356. [PMID: 39080833 DOI: 10.1002/cphc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
On the basis of thermal etching bulk graphitic carbon nitride (g-C3N4), a mild hydrochloric acid treatment method was used in this work to produce g-C3N4 nano-sheets (CNNS) and further carbon nitride with chloride-modification (CNCl). The latter has thinner layer and smaller particle size and exhibit greatly improved dispersibility and solubility in water, DMSO and other polar solvents. A typical photocatalytic reaction in solution driven by CNCl shows a significantly improved photocatalytic performance over bulk g-C3N4 and CNNS. Steady-state analytical tools including SEM, mass, UV-Vis, and IR spectroscopies, and time-resolved two-dimensional infrared (2D IR) vibrational spectroscopy, were used together in this work. Better solubility, more flexible structure, smaller size, easier generation of free radicals and lower recombination rate of electron-hole pair, are believed to be reasons for the superior photocatalytic performance of CNCl.
Collapse
Affiliation(s)
- Yueting Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Liu B, Tian W, Chu M, Lu Z, Zou M, Chen Z, Zhang R. Removal of sulfonylurea herbicides with g-C 3N 4-based photocatalysts: A review. CHEMOSPHERE 2024; 354:141742. [PMID: 38513951 DOI: 10.1016/j.chemosphere.2024.141742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The accumulation of agricultural chemicals in the environment has become a global concern, of which sulfonylurea herbicides (SUHs) constitute a significant category. Solar-driven photocatalysis is favored for removing organic pollutants due to its high efficiency and environmental friendliness. Graphite carbon nitride (g-C3N4)-based materials with superior catalytic activities and physicochemical stabilities are promising photocatalysts. This review describes the g-C3N4-based materials and their uses in the photocatalytic degradation of SUHs or other organic pollutants with similar structures. First, the fundamentals of g-C3N4-based materials and photocatalytic SUHs degradation are discussed to provide an in-depth understanding of the mechanism for the photocatalytic activity. The ability of different g-C3N4-based materials to photocatalytically degrade SUH-like structures is then discussed and summarized based on different modification strategies (morphology modulation, elemental doping, defect engineering, and heterojunction formations). Meanwhile, the effects of different environmental factors on the photocatalytic performance of g-C3N4-based materials are described. Finally, the major challenges and opportunities of g-C3N4-based materials for the photocatalytic degradation of SUHs are proposed. It is hoped that this review will show the feasibility of photocatalytic degradation of SUHs with g-C3N4-based materials.
Collapse
Affiliation(s)
- Bingkun Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; Laoshan Laboratory, Qingdao, 266234, PR China.
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Mengyuan Zou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zhuo Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Ruijuan Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| |
Collapse
|
5
|
Velusamy S, Roy A, Mariam E, Krishnamurthy S, Sundaram S, Mallick TK. Effectual visible light photocatalytic reduction of para-nitro phenol using reduced graphene oxide and ZnO composite. Sci Rep 2023; 13:9521. [PMID: 37308568 DOI: 10.1038/s41598-023-36574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Removing wastewater pollutants using semiconducting-based heterogeneous photocatalysis is an advantageous technique because it provides strong redox power charge carriers under sunlight irradiation. In this study, we synthesized a composite of reduced graphene oxide (rGO) and zinc oxide nanorods (ZnO) called rGO@ZnO. We established the formation of type II heterojunction composites by employing various physicochemical characterization techniques. To evaluate the photocatalytic performance of the synthesized rGO@ZnO composite, we tested it for reducing a common wastewater pollutant, para-nitro phenol (PNP), to para-amino phenol (PAP) under both ultraviolet (UV) and visible light irradiances. The rGOx@ZnO (x = 0.5-7 wt%) samples, comprising various weights of rGO, were investigated as potential photocatalysts for the reduction of PNP to PAP under visible light irradiation. Among the samples, rGO5@ZnO exhibited remarkable photocatalytic activity, achieving a PNP reduction efficiency of approximately 98% within a short duration of four minutes. These results demonstrate an effective strategy and provide fundamental insights into removing high-value-added organic water pollutants.
Collapse
Affiliation(s)
- Sasireka Velusamy
- Solar Energy Research Group, Environment and Sustainability Institute (ESI), Faculty of Environment, Science and Economy, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK
| | - Anurag Roy
- Solar Energy Research Group, Environment and Sustainability Institute (ESI), Faculty of Environment, Science and Economy, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Ezrah Mariam
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, UK
| | | | - Senthilarasu Sundaram
- Cybersecurity and Systems Engineering, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, EH10 5DT, UK.
| | - Tapas K Mallick
- Solar Energy Research Group, Environment and Sustainability Institute (ESI), Faculty of Environment, Science and Economy, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK
| |
Collapse
|
6
|
Arifin MN, Jusoh R, Abdullah H, Ainirazali N, Setiabudi HD. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro- and alkyl-phenolic compounds. ENVIRONMENTAL RESEARCH 2023; 229:115936. [PMID: 37080279 DOI: 10.1016/j.envres.2023.115936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.
Collapse
Affiliation(s)
- M N Arifin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - R Jusoh
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - N Ainirazali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - H D Setiabudi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid & Processes, Universiti Malaysia Pahang, Lebuh Persiaran Tun Khalil Yaakob, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
7
|
Balakrishnan A, Gaware GJ, Chinthala M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. CHEMOSPHERE 2023; 310:136853. [PMID: 36243095 DOI: 10.1016/j.chemosphere.2022.136853] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Nitrophenols are the most widely used raw materials in the chemical, pesticide, and pharmaceutical industries. Due to improper waste management and excessive usage, nitrophenol is listed as a priority pollutant and garnered global research attention. This review highlights the recent progress on heterojunction photocatalysts toward eliminating nitrophenols. The detailed mechanisms of the electron-hole pair separation using different heterojunctions such as traditional, p-n, Z-scheme, S-scheme, and Schottky heterojunctions are elaborated. The performance of the photocatalysts is evaluated using quantum efficiency. Among the heterojunctions, Z-scheme exhibited maximum removal efficiency of 100% and found superior over other heterojunctions. Even though heterojunctions exhibit good efficiency, the reusability of the heterojunction photocatalyst is not reported beyond 5 cycles. Further research is indeed to develop a highly reusable photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Akash Balakrishnan
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ghanghor Jayant Gaware
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mahendra Chinthala
- Process Intensification Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
8
|
Gan C, Sheng M, Hu Z, Li Y, Peng Y, Xiang Z, Sun B, Jiang H. Novel and efficient strategy for chlorophenols and CO2 transformation over carbon nitride nanotubes: Effect of the hydroxyl grafting and surface electron polarization. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Hou L, Li W, Wu Z, Wei Q, Yang H, Jiang Y, Wang T, Wang Y, He Q. Embedding ZnCdS@ZnIn2S4 into thiazole-modified g-C3N4 by electrostatic self-assembly to build dual Z-scheme heterojunction with spatially separated active centers for photocatalytic H2 evolution and ofloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Platinum Nanoclusters Uniformly Dispersed on Covalent Organic Framework Supports for Selective Synthesis of Secondary Amines. ChemCatChem 2021. [DOI: 10.1002/cctc.202101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Zhu X, Pan Z, Jiang H, Du Y, Chen R. Hierarchical Pd/UiO-66-NH2-SiO2 nanofibrous catalytic membrane for highly efficient removal of p-nitrophenol. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|