1
|
Yuan F, Gao Q, Lv Z, Zhang Y, Liu X, Peng J, Li Z. 2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines. NANO LETTERS 2024. [PMID: 39470653 DOI: 10.1021/acs.nanolett.4c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Efficient lithium extraction from salt lakes is essential for a sustainable resource supply. This study tackles the challenge of separating Li+ from Mg2+ in complex brines by innovatively integrating two-dimensional (2D) graphene oxide (GO) with bimetallic metal-organic frameworks (MOFs). Zn2+ and Co2+ ions are confined within GO interlayers through an in situ synthesis, forming a 2D Zn-Co MOFs/GO membrane (Zn-Co-GOM). This design exploits the unique advantages of bimetallic MOFs, including enhanced structural stability and superior ion separation capabilities due to the synergistic effects of Zn and Co. The Zn-Co-GOM demonstrates an impressive separation factor of 191 for Li+ over Mg2+, significantly surpassing traditional membranes. This exceptional selectivity is achieved through a combination of size exclusion effects and ion transport energy barriers. Our approach not only enhances the practical application of membrane technology for lithium extraction from salt lakes but also provides valuable insights into the underlying separation mechanisms.
Collapse
Affiliation(s)
- Furong Yuan
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifeng Gao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Zixiao Lv
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
| | - Yaoling Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Xin Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Jiaoyu Peng
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Xining 810008, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou 730000, China
- Qinghai Minzu University, No. 3, Bayi Middle Road, Xining 810007, China
| |
Collapse
|
2
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Qiao F, Wang X, Han Y, Kang Y, Yan H. Preparation of poly (methacrylic acid)/graphene oxide aerogel as solid-phase extraction adsorbent for extraction and determination of dopamine and tyrosine in urine of patients with depression. Anal Chim Acta 2023; 1269:341404. [PMID: 37290858 DOI: 10.1016/j.aca.2023.341404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Dopamine (DA) and l-tyrosine (l-Tyr) are neurotransmitters involved in various neuropsychiatric disorders. Therefore, it is important to monitor their levels for diagnosis and treatment. In this study, we synthesized poly (methacrylic acid)/graphene oxide aerogels (p(MAA)/GOA) by in situ polymerization and freeze-drying using graphene oxide and methacrylic acid as substrates. Then, the p(MAA)/GOA were applied as solid-phase extraction adsorbents to extract DA and l-Tyr from urine samples, followed by quantification using high performance liquid chromatography (HPLC). The p(MAA)/GOA showed better adsorption performance for DA and l-Tyr than commercial adsorbents, likely as a result of the strong adsorption of the target analytes via π-π and hydrogen bonding interactions. Further, the developed method had good linearity (r > 0.9990) at concentrations of DA and l-Tyr of 0.075-2.0 and 0.75-20.0 μg mL-1, respectively, as well as a limit of detection of 0.018-0.048 μg mL-1, limit of quantitation of 0.059-0.161 μg mL-1, spiked recovery of 91.1-104.0%, and interday precision of 3.58-7.30%.The method was successfully applied to determine DA and l-Tyr in the urine samples of patients suffering from depression, demonstrating its potential for clinical applications.
Collapse
Affiliation(s)
- Fengxia Qiao
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, 071000, China; Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China.
| | - Xinrui Wang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China; Management Office of Tianjin Medicine and Pharmacy Association, Tianjin, 300040, China
| | - Yehong Han
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yongsheng Kang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding, 071000, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Ye S, Zhang W, Hu X, He H, Zhang Y, Li W, Hu G, Li Y, Deng X. Selective Adsorption Behavior and Mechanism for Cd(II) in Aqueous Solution with a Recoverable Magnetie-Surface Ion-Imprinted Polymer. Polymers (Basel) 2023; 15:polym15112416. [PMID: 37299215 DOI: 10.3390/polym15112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
A novel recoverable magnetic Cd(II) ion-imprinted polymer was synthesized on the surface of silica-coated Fe3O4 particles via the surface imprinting technique and chemical grafting method. The resulting polymer was used as a highly efficient adsorbent for the removal of Cd(II) ions from aqueous solutions. The adsorption experiments revealed that Fe3O4@SiO2@IIP had a maximum adsorption capacity of up to 29.82 mg·g-1 for Cd(II) at an optimal pH of 6, with the adsorption equilibrium achieved within 20 min. The adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm adsorption model. Thermodynamic studies showed that the adsorption of Cd(II) on the imprinted polymer was spontaneous and entropy-increasing. Furthermore, the Fe3O4@SiO2@IIP could rapidly achieve solid-liquid separation in the presence of an external magnetic field. More importantly, despite the poor affinity of the functional groups constructed on the polymer surface for Cd(II), we improved the specific selectivity of the imprinted adsorbent for Cd(II) through surface imprinting technology. The selective adsorption mechanism was verified by XPS and DFT theoretical calculations.
Collapse
Affiliation(s)
- Siqing Ye
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Weiye Zhang
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xingliang Hu
- Kunming Lüdao Environmental Technology Co., Ltd., Kunming 650228, China
| | - Hongxing He
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yi Zhang
- Yunnan Key Laboratory of Food Safety Testing Technology, College of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Weili Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Guangyuan Hu
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yue Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xiujun Deng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
5
|
ZIF-8-derived N-doped hierarchical porous carbon coated with imprinted polymer as magnetic absorbent for phenol selective removal from wastewater. J Colloid Interface Sci 2023; 630:573-585. [DOI: 10.1016/j.jcis.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
6
|
Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Baudino L, Santos C, Pirri CF, La Mantia F, Lamberti A. Recent Advances in the Lithium Recovery from Water Resources: From Passive to Electrochemical Methods. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201380. [PMID: 35896956 PMCID: PMC9507372 DOI: 10.1002/advs.202201380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing amount of batteries used in today's society has led to an increase in the demand of lithium in the last few decades. While mining resources of this element have been steadily exploited and are rapidly depleting, water resources constitute an interesting reservoir just out of reach of current technologies. Several techniques are being explored and novel materials engineered. While evaporation is very time-consuming and has large footprints, ion sieves and supramolecular systems can be suitably tailored and even integrated into membrane and electrochemical techniques. This review gives a comprehensive overview of the available solutions to recover lithium from water resources both by passive and electrically enhanced techniques. Accordingly, this work aims to provide in a single document a rational comparison of outstanding strategies to remove lithium from aqueous sources. To this end, practical figures of merit of both main groups of techniques are provided. An absence of a common experimental protocol and the resulting variability of data and experimental methods are identified. The need for a shared methodology and a common agreement to report performance metrics are underlined.
Collapse
Affiliation(s)
- Luisa Baudino
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Cleis Santos
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Candido F. Pirri
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| | - Fabio La Mantia
- Energiespeicher‐ und EnergiewandlersystemeUniversität BremenBibliothekstraße 128359BremenGermany
| | - Andrea Lamberti
- DISAT Dipartimento di Scienza Applicata e TecnologiaPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
- Istituto Italiano di TecnologiaCenter for Sustainable Future TechnologiesVia Livorno 60Torino10144Italy
| |
Collapse
|
8
|
Magnetic Fe3O4/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121169] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Yang J, Qu G, Liu C, Zhou S, Li B, Wei Y. An effective lithium ion-imprinted membrane containing 12-crown ether-4 for selective recovery of lithium. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Brewer A, Florek J, Kleitz F. A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:2752-2765. [PMID: 35444492 PMCID: PMC8979348 DOI: 10.1039/d2gc00347c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 05/13/2023]
Abstract
Critical materials (CMs) are a group of elements that have been determined to be important for the modern economy, but which may face current or potential supply limitations. Some examples of metals that have received the CM designation include the rare earth elements, indium, gallium, and lithium. The last decade has seen a major push for the development of new and improved technologies for the recovery and purification of CMs from various traditional and non-traditional resources in an effort to diversify supply. Solid-phase extraction (SPE) is one broad category of these experimental extraction technologies. SPE involves the application of a solid material to preferentially retain in the solid phase one or more specific components of an aqueous solution, leaving the other components behind in the aqueous phase. A wide range of different sorbents has been used for SPE, and many offer significant potential advantages, including low cost, low environmental impact, and high customizability. Hierarchically porous silica monoliths are one example of a cutting-edge sorbent that provides a durable, high surface area foundation that can be functionalized with a variety of targeted ligands for the selective extraction of specific CMs. Despite impressive recent advances in SPE, there remain areas for improvement that are common across the discipline. To demonstrate the practical viability of these innovative CM recovery systems, future SPE studies would benefit from devoting additional focus to the scalability of their material, as well as from focusing on real-world feedstocks and conducting techno-economic analyses and environmental impact studies.
Collapse
Affiliation(s)
- Aaron Brewer
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Justyna Florek
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna Währinger Strasse 42 1090 Vienna Austria
| |
Collapse
|
11
|
Ding C, Deng Y, Merchant A, Su J, Zeng G, Long X, Zhong ME, Yang L, Gong D, Bai L, Zhou X, Liu X. Insights into Surface Ion-imprinted Materials for Heavy Metal Ion Treatment: Challenges and Opportunities. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2044352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Jiaying Su
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Xiuyu Long
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Lihua Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Daoxin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiangying Liu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
12
|
Jiang C, Fang M, Huang A, Han S, Jin GP. Fabrication of a novel magnetic rubidium ion-imprinted polymer for selective separation. NEW J CHEM 2022. [DOI: 10.1039/d1nj06207g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel magnetic ion-imprinted polymer (MIIP) for Rb+ was synthesized by combining the surface imprinting technology with the magnetic separation technology.
Collapse
Affiliation(s)
- Chuanyang Jiang
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Fang
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - An Huang
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shikui Han
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guan-Ping Jin
- Anhui Key Lab of Controllable Chemical Reaction & Material Chemical Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Li Z, He G, Zhao G, Niu J, Li L, Bi J, Mu H, Zhu C, Chen Z, Zhang L, Zhang H, Zhang J, Wang B, Wang Y. Preparation of a novel ion-imprinted membrane using sodium periodate-oxidized polydopamine as the interface adhesion layer for the direction separation of Li+ from spent lithium-ion battery leaching solution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|