1
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
2
|
Wei Z, Wang P, Tian X, sun W, Pan J. Imprinted polymer beads featuring both predefined multiple-point interaction and accessible binding sites for precise recognition of 2′-deoxyadenosine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Composite Hydrogel Microspheres Encapsulating Hollow Mesoporous Imprinted Nanoparticles for Selective Capture and Separation of 2′-Deoxyadenosine. Molecules 2022; 27:molecules27217444. [DOI: 10.3390/molecules27217444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Hollow mesoporous silica nanoparticles have been widely applied as a carrier material in the molecular imprinting process because of their excellent properties, with high specific surface area and well-defined active centers. However, these kinds of materials face the inevitable problem that they have low mass transfer efficiency and cannot be conveniently recycled. In order to solve this problem, this work has developed a composite hydrogel microsphere (MMHSG) encapsulated with hollow mesoporous imprinted nanoparticles for the selective extraction of 2’-deoxyadenosine (dA). Subsequently, the hollow mesoporous imprinted polymers using dA as template molecule and synthesized 5-(2-carbomethoxyvinyl)-2′-deoxyuridine (AcrU) as functional monomer were encapsulated in hydrogel. MMHSG displayed good performance in specifically recognizing and quickly separating dA, whereas no imprinting effect was observed among 2′-deoxyguanosine (dG), deoxycytidine (dC), or 5′-monophosphate disodium salt (AMP). Moreover, the adsorption of dA by MMHSG followed chemisorption and could reach adsorption equilibrium within 60 min; the saturation adsorption capacity was 20.22 μmol·g−1. The introduction of AcrU could improve selectivity through base complementary pairing to greatly increase the imprinting factor to 3.79. Therefore, this was a successful attempt to combine a hydrogel with hollow mesoporous silica nanoparticles and molecularly imprinted material.
Collapse
|