1
|
Wang Z, Zhang W, Wang W, Wang P, Ni L, Wang S, Ma J, Cheng W. Amine-Modified ZIF Composite Membranes: Regulated Nanochannel Interactions for Enhanced Cation Transport and Precise Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4199-4209. [PMID: 39976453 DOI: 10.1021/acs.est.5c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electromembrane water treatment technologies are attracting attention for their energy efficiency and precise separation of counterions. However, ion-exchange membranes exhibit low ionic conductance and selectivity for ions with similar charges. In this study, we developed a novel ZIF-8 composite membrane with amine-modified nanochannels through an in situ PEI-assisted seeding and secondary growth method. An integral and uniform selective layer was formed, and the amine-modified nanochannels induced differential transport of Li+, Na+, K+, and Mg2+ via the dehydration-hydration process. The composite membrane possessed a lower energy barrier for Na+ transport (Ea = 13 kJ mol-1) compared to Mg2+ (Ea = 17 kJ mol-1), showing a Na+ flux of 3.7 × 10-8 mol·cm-2·s-1 and a Na+/Mg2+ permselectivity of 52 (∼60 times higher than the commercial membrane). The physicochemical and electrochemical properties of the composite membranes were systematically characterized, revealing the significant role of the Mg2+ layer in increasing Mg2+ repulsion and facilitating Na+ diffusion. Besides, DFT simulation and interaction energy calculation elucidated that a moderate binding energy and compensation effect between ions and nanochannels, which can be precisely regulated by PEI incorporation, are crucial for the favorable passage of Na+ while maintaining high Mg2+ rejection. The membrane also demonstrated performance stability during a 5-day test and maintained high selectivity across varying salinity and pH conditions. This work advances the development of efficient cation separation membranes for sustainable desalination and resource recovery.
Collapse
Affiliation(s)
- Zhe Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Weifu Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Lei Ni
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Wei Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| |
Collapse
|
2
|
Wu Y, Chen Z, Lu C, Hu C, Qu J. Pulsatile Ion Transport in Nanofiltration Membranes Coupled with Electrically Tunable Pore and Hydroxyl Electrostatic Interactions. ACS NANO 2025; 19:4993-5004. [PMID: 39848794 DOI: 10.1021/acsnano.4c17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pulsatile ion transport facilitates the adjusted transfer of substances, meeting the requirements for the gradient and timed separation of multiple components in membrane processes. Responsive nanofiltration membranes are thus currently receiving widespread attention but face limitations due to their narrow performance adjustment range. Herein, hydroxyl functional groups were introduced into electrically responsive nanofiltration membranes to broaden the adjustment range of separation performance through a combination of pore size sieving and functional group interactions, resulting in a greater change in rejection and flux compared to the original membrane. Membrane pore size is regulated by polypyrrole volume changes and becomes more variable when the cation's hydration radius is smaller. Although the hydroxyl group did not affect the charge transfer or volume change capacity of polypyrrole, it enhanced ion-pore interactions during ion transport, which was particularly pronounced in smaller nanochannels. The size effect of functional group interactions more strongly enhances the transmembrane energy barrier in the reduced state compared with the oxidized state, ultimately resulting in greater modulation of performance. This coupling strategy provides insights into the design of responsive membranes, offering the potential to achieve gradient separation of various solutes.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nunziata G, Nava M, Lacroce E, Pizzetti F, Rossi F. Thermo-Responsive Polymer-Based Nanoparticles: From Chemical Design to Advanced Applications. Macromol Rapid Commun 2025:e2401127. [PMID: 39895239 DOI: 10.1002/marc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Thermo-responsive polymers have emerged as a cutting-edge tool in nanomedicine, paving the way for innovative approaches to targeted drug delivery and advanced therapeutic strategies. These "smart" polymers respond to temperature changes, enabling controlled drug release in pathological environments characterized by high temperatures. By exploiting their unique phase transition, occurring at the lower or upper critical solution temperatures (LCST and UCST), these systems ensure localized therapeutic action, minimizing collateral damage to healthy tissues. The integration of these polymers into nanoparticles with hydrophilic shells and hydrophobic cores enhances their stability and biocompatibility. Furthermore, advanced polymer engineering allows precise modulation of LCST and UCST through adjustments in composition and hydrophilic-lipophilic balance, optimizing their responsiveness for specific applications. In addition to drug delivery, thermo-responsive nanoparticles are gaining attention in several fields such as gene therapy and imaging. Therefore, this review explores the chemical and structural diversity of thermo-responsive nanoparticles, emphasizing their ability to encapsulate and release drugs effectively. Second, this review highlights the potential of thermo-responsive nanoparticles to redefine treatment paradigms, providing a comprehensive understanding of their mechanisms, applications, and future perspectives in biomedical research.
Collapse
Affiliation(s)
- Giuseppe Nunziata
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Marco Nava
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Elisa Lacroce
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
4
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402335. [PMID: 39676484 PMCID: PMC11795731 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Chunchun Ye
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Liyuan Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Manoj K. Sugumar
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Yan Zhao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Neil B. McKeown
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Serena Margadonna
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| |
Collapse
|
5
|
Wang W, Wang C, Huang R, Hong G, Zhang Y, Zhang X, Shao L. Boosting lithium/magnesium separation performance of selective electrodialysis membranes regulated by enamine reaction. WATER RESEARCH 2024; 268:122729. [PMID: 39531798 DOI: 10.1016/j.watres.2024.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Monovalent cation exchange membranes (MCEMs) have progressively played an important role in the field of ion separation. However, according to transition state theory (TST), synchronously tuning the enthalpy barrier (△H) and entropy barrier (△S) for cation transport to improve ion separation performance is challenging. Here, the enamine reaction between the -NH- and -CHO groups is applied to regulate the subsequent Schiff-base reaction between the -CHO and -NH2 groups, which reduces the positive charges of the selective layer but increases the steric hindrance. The increased -T△S (△S term) for cation transport plays an important role in improving Li+/Mg2+ separation performance. The optimal positively-charged glutaraldehyde@piperazine/polyethyleneimine assembled membrane (M-Glu@PIP/PEI) has a perm-selectivity (Li+/Mg2+) of 31.83 with a Li+ flux of 1.87 mol·m-2·h-1, surpassing the Li+/Mg2+ separation performance of state-of-the-art monovalent ion selective membranes (MISMs). Most importantly, the selective electrodialysis (S-ED) process with M-Glu@PIP/PEI can be directly applied to treat simulated salt-lake brines (SLBs), and its superior Li+/Mg2+ separation performance and operational stability enables 74.44 % of the lithium resources with a Li+ purity of 34.02 % to be recovered. This study presents new insights into the design of high-performance MCEMs for energy-efficient resource recovery.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Renyao Huang
- Beijing OriginWater Membrane Technology Co., Ltd, Beijing 101400, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xigui Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
6
|
Gorobchenko AD, Gil VV, Nikonenko VV, Sharafan MV. Mathematical Modeling of the Selective Transport of Singly Charged Ions Through Multilayer Composite Ion-Exchange Membrane during Electrodialysis. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s251775162206004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
The deposition of several alternating anion- and cation-exchange surface layers (layer-by-layer method) is a promising technique for the modification of ion-exchange membranes, which makes it possible to essentially increase their selectivity to singly charged ions. This paper presents a one-dimensional model, which is based on the Nernst–Planck–Poisson equations and describes the competitive transfer of singly and doubly charged ions through a multilayer composite ion-exchange membrane. It has been revealed for the first time that, as in the earlier studied case of a bilayer membrane, the dependence of the specific permselectivity coefficient (P1/2) of a multilayer membrane on the electrical current density passes through a maximum $$\left( {P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}} \right).$$ It has been shown that an increase in the number of nanosized modification bilayers n leads to the growth of $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }},$$ but the flux of a preferably transferred ion decreases in this case. It has been established that $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$ is attained at underlimiting current densities and relatively low potential drop. The simulated dependences $$P_{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}^{{\max }}$$(n) qualitatively agree with the known literature experimental and theoretical results.
Collapse
|
7
|
Wang Y, Ren L, Wang J, Zhao J, Chen QB. In-situ growth of anionic covalent organic frameworks efficaciously enhanced the monovalent selectivity of anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Musarurwa H, Tavengwa NT. Thermo-responsive polymers and advances in their applications in separation science. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Zhao Z, Li X, Zhang H, Sheng F, Xu T, Zhu Y, Zhang H, Ge L, Xu T. Polyamide-Based Electronanofiltration Membranes for Efficient Anion Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hao Zhang
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, People’s Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
11
|
Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Optimizing functional layer of cation exchange membrane by three-dimensional cross-linking quaternization for enhancing monovalent selectivity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Gorobchenko A, Mareev S, Nikonenko V. Mathematical Modeling of Monovalent Permselectivity of a Bilayer Ion-Exchange Membrane as a Function of Current Density. Int J Mol Sci 2022; 23:ijms23094711. [PMID: 35563102 PMCID: PMC9104382 DOI: 10.3390/ijms23094711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Modification of an ion-exchange membrane with a thin layer, the charge of which is opposite to the charge of the substrate membrane, has proven to be an effective approach to obtaining a composite membrane with permselectivity towards monovalent ions. However, the mechanism of permselectivity is not clear enough. We report a 1D model based on the Nernst–Planck–Poisson equation system. Unlike other similar models, we introduce activity coefficients, which change when passing from one layer of the membrane to another. This makes it possible to accurately take into account the fact that the substrate membranes usually selectively sorb multiply charged counterions. We show that the main cause for the change in the permselectivity coefficient, P1/2, with increasing current density, j, is the change in the membrane/solution layer, which controls the fluxes of the competing mono- and divalent ions. At low current densities, counterion fluxes are controlled by transfer through the substrate membrane, which causes selective divalent ion transfer. When the current increases, the kinetic control goes first to the modification layer (which leads to the predominant transfer of monovalent ions) and then, at currents close to the limiting current, to the depleted diffusion layer (which results in a complete loss of the permselectivity). Thus, the dependence P1/2 − j passes through a maximum. An analytical solution is obtained for approximate assessment of the maximum value of P1/2 and the corresponding fluxes of the competing ions. The maximum P1/2 values, plotted as a function of the Na+ ion current density at which this maximum is reached, gives the theoretical trade-off curve between the membrane permselectivity and permeability of the bilayer monovalent selective ion-exchange membrane under consideration.
Collapse
|
14
|
Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Musarurwa H, Tavengwa NT. Application of polysaccharide-based metal organic framework membranes in separation science. Carbohydr Polym 2022; 275:118743. [PMID: 34742445 DOI: 10.1016/j.carbpol.2021.118743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022]
Abstract
Polysaccharide/MOF composite membranes have captured the interests of many researchers during decontamination of polluted environments. Their popularity can be attributed to the relatively high chemical and thermal stabilities of these composite membranes. Chitosan is among the polysaccharides extensively used during the synthesis of hybrid membranes with MOFs. The applications of chitosan/MOF composite membranes in separation science are explored in detail in this paper. Researchers have also synthesised mixed matrix membranes of MOFs with cellulose and cyclodextrin that have proved to be effective during separation of a variety of materials. The uses of cellulose/MOF and cyclodextrin/MOF membranes for the removal of environmental pollutants are discussed in this review. In addition, the challenges associated with the use of these mixed matrix membranes are explored in this current paper.
Collapse
Affiliation(s)
- Herbert Musarurwa
- School of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa.
| | | |
Collapse
|
16
|
Afsar NU, Li X, Zhu Y, Ge Z, Zhou Y, Zhao Z, Hussain A, Ge L, Fu R, Liu Z, Xu T. In‐situ interfacial polymerization endows surface enrichment of
COOH
groups on anion exchange membranes for efficient Cl
−
/
SO
4
2
−
separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Noor Ul Afsar
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Zijuan Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yue Zhou
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Zhang Zhao
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Arif Hussain
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology University of Science and Technology of China Hefei People's Republic of China
| | - Rongqiang Fu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Zhaoming Liu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd., The Hi‐tech Zone Weifang People's Republic of China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
17
|
Pan J, Tao Y, Zhao L, Yu X, Zhao X, Wu T, Liu L. Green preparation of quaternized vinylimidazole-based anion exchange membrane by photopolymerization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Song W, He Y, Shehzad MA, Ge X, Ge L, Liang X, Wei C, Ge Z, Zhang K, Li G, Yu W, Wu L, Xu T. Exploring H-bonding interaction to enhance proton permeability of an acid-selective membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|