1
|
Xiao J, Zhu T, Zhang H, Xie W, Dong R, Li Y, Wang X. Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation. Angew Chem Int Ed Engl 2024; 63:e202411270. [PMID: 39048536 DOI: 10.1002/anie.202411270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO2), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities. These membranes exhibit superior ideal selectivity for gas separation compared to other reported ionogel membranes, achieving a CO2/nitrogen selectivity of 61.7 and a CO2/methane selectivity of 24.6, coupled with an acceptable CO2 permeability of 186.4 Barrer. Additionally, these gas separation ionogel membranes can be upcycled into ionic skins for sensing applications, further enhancing their utility. This research outlines a strategic approach to molecularly engineer ionogel membranes, offering a promising pathway for developing sustainable, high-performance materials for advanced gas separation technologies.
Collapse
Affiliation(s)
- Jing Xiao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Tengyang Zhu
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Haiyang Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wei Xie
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
2
|
Alkandari SH, Castro-Dominguez B. Electro-casting for Superior Gas Separation Membrane Performance and Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56600-56611. [PMID: 37991322 DOI: 10.1021/acsami.3c14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Gas separation polymer membranes play a pivotal role in various industrial processes including carbon capture and hydrogen production. However, the inherent trade-off between permeability and selectivity coupled with challenges in membrane manufacturing has hindered their widespread industrial deployment. To address the permselectivity challenges, researchers have explored increasingly complex polymers, composite systems, and other materials. In this study, we introduce a novel membrane manufacturing technique called "electro-casting" that not only enables efficient membrane fabrication but also enhances the trade-off of traditional polymer-based membranes. We fabricated cellulose acetate (CA) membranes embedded with 1-ethyl-3-methyl imidazolium via electro-casting and performed a comparative analysis of structural, morphological, and gas transport characteristics against membranes made via conventional casting techniques. We discovered that electro-casted membranes exhibited a unique crystalline structure, surface topology that induced a remarkable 200% improvement in CO2/N2 selectivity and a 110% increase in CO2/CH4 selectivity. The electric field generated during the manufacturing process played a crucial role in altering the supramolecular structure of the polymer, thereby increasing the separation properties of the membranes as well as their thermal and mechanical features. Electro-casting induced a polymer crystallization effect that disrupted the permeability-selectivity trade-off observed in conventional membranes, while producing highly stable membranes. Moreover, the simplicity of this manufacturing method and its significant impact on membrane properties have the potential to accelerate the deployment of gas separation membranes, facilitating the transition toward a NetZero chemical industry.
Collapse
Affiliation(s)
- Sharifah H Alkandari
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
- Centre for Digital Manufacturing and Design (dMaDe), University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
3
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
4
|
Fakoori M, Azdarpour A, Honarvar B. Performance of amine‐functionalized MIL‐53 incorporated thin‐film nanocomposite Pebax membranes for CO
2
/CH
4
mixed gas separation. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahdi Fakoori
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Amin Azdarpour
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| |
Collapse
|
5
|
Investigations of Thermal, Mechanical, and Gas Barrier Properties of PA11-SiO2 Nanocomposites for Flexible Riser Application. Polymers (Basel) 2022; 14:polym14204260. [PMID: 36297838 PMCID: PMC9610365 DOI: 10.3390/polym14204260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Acidic gas penetration through the internal pressure sheath of a flexible riser tends to cause a corrosive environment in the annulus, reducing the service life of the flexible riser. Nanoparticles can act as gas barriers in the polymer matrix to slow down the gas permeation. Herein, we prepared PA11/SiO2 composites by the melt blending method. The effect of adding different amounts of SiO2 to PA11 on its gas barrier properties was investigated by conducting CO2 permeation tests between 20 °C and 90 °C. As the temperature increased, the lowest value of the permeability coefficient that could be achieved for the PA11 with different contents of SiO2 increased. The composites PA/0.5% SiO2 and PA/1.5% SiO2 had the lowest permeation coefficients in the glassy state (20 °C) and rubbery state (≥50 °C). We believe that this easy-to-produce industrial PA/SiO2 composite can be used to develop high-performance flexible riser barrier layers. It is crucial for understanding riser permeation behavior and enhancing barrier qualities.
Collapse
|
6
|
Seo CH, Lim SW, Min HJ, Kim JH, Kim JH. Preparation of semi-alicyclic homo- and blended polyimide membranes using alicyclic dianhydrides with kink structures and their gas separation properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Lai WH, Wang DK, Tseng HH, Wey MY. Photo-induced poly(styrene-[C1mim][Tf2N])-supported hollow fiber ionic liquid membranes to enhance CO2 separation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Musarurwa H, Tavengwa NT. Application of polysaccharide-based metal organic framework membranes in separation science. Carbohydr Polym 2022; 275:118743. [PMID: 34742445 DOI: 10.1016/j.carbpol.2021.118743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022]
Abstract
Polysaccharide/MOF composite membranes have captured the interests of many researchers during decontamination of polluted environments. Their popularity can be attributed to the relatively high chemical and thermal stabilities of these composite membranes. Chitosan is among the polysaccharides extensively used during the synthesis of hybrid membranes with MOFs. The applications of chitosan/MOF composite membranes in separation science are explored in detail in this paper. Researchers have also synthesised mixed matrix membranes of MOFs with cellulose and cyclodextrin that have proved to be effective during separation of a variety of materials. The uses of cellulose/MOF and cyclodextrin/MOF membranes for the removal of environmental pollutants are discussed in this review. In addition, the challenges associated with the use of these mixed matrix membranes are explored in this current paper.
Collapse
Affiliation(s)
- Herbert Musarurwa
- School of Chemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa.
| | | |
Collapse
|
9
|
Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Ebrahimi M, Kujawski W, Fatyeyeva K, Kujawa J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). Int J Mol Sci 2021; 22:5430. [PMID: 34063925 PMCID: PMC8196583 DOI: 10.3390/ijms22115430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Today, the use of polymer electrolyte membranes (PEMs) possessing ionic liquids (ILs) in middle and high temperature polymer electrolyte membrane fuel cells (MT-PEMFCs and HT-PEMFCs) have been increased. ILs are the organic salts, and they are typically liquid at the temperature lower than 100 °C with high conductivity and thermal stability. The membranes containing ILs can conduct protons through the PEMs at elevated temperatures (more than 80 °C), unlike the Nafion-based membranes. A wide range of ILs have been identified, including chiral ILs, bio-ILs, basic ILs, energetic ILs, metallic ILs, and neutral ILs, that, from among them, functionalized ionic liquids (FILs) include a lot of ion exchange groups in their structure that improve and accelerate proton conduction through the polymeric membrane. In spite of positive features of using ILs, the leaching of ILs from the membranes during the operation of fuel cell is the main downside of these organic salts, which leads to reducing the performance of the membranes; however, there are some ways to diminish leaching from the membranes. The aim of this review is to provide an overview of these issues by evaluating key studies that have been undertaken in the last years in order to present objective and comprehensive updated information that presents the progress that has been made in this field. Significant information regarding the utilization of ILs in MT-PEMFCs and HT-PEMFCs, ILs structure, properties, and synthesis is given. Moreover, leaching of ILs as a challenging demerit and the possible methods to tackle this problem are approached in this paper. The present review will be of interest to chemists, electrochemists, environmentalists, and any other researchers working on sustainable energy production field.
Collapse
Affiliation(s)
- Mohammad Ebrahimi
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| | - Kateryna Fatyeyeva
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| |
Collapse
|