1
|
Ding Y, Qin F, Guo J, Gong D, Li Q, Wang X, Tan X, Liu H, Huang Z. Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO 2-x Photocatalyst for Enhanced Pollutants Degradation Performance. Chemphyschem 2023; 24:e202300183. [PMID: 37285235 DOI: 10.1002/cphc.202300183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO2-x photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO2-x (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO2 . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O2- ) and photogenerated holes (h+ ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.
Collapse
Affiliation(s)
- Yifan Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Fanghong Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Jialin Guo
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Danming Gong
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Qiufei Li
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiangyi Wang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| | - Haibo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Key Laboratory of Guangxi Biorefinery, Nanning, 530004, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China
| |
Collapse
|
2
|
Zhang X, Deng J, Yang C, Wang Z, Liu Y. Selective reduction of nitrite to nitrogen by polyaniline-carbon nanotubes composite at neutral pH. ENVIRONMENTAL RESEARCH 2022; 214:114203. [PMID: 36030923 DOI: 10.1016/j.envres.2022.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The selective reduction of nitrite (NO2-) to nitrogen by chemical reductant is a desirable strategy to remove NO2- from polluted water and wastewater. However, the residue and reuse of chemical reductant are two main issues to be addressed. Herein, a novel polyaniline-carbon nanotubes composite (PANI-CNTs) was developed by in-situ polymerization to selectively reduce NO2- to nitrogen gas (N2). The used PANI-CNTs could be reused after regeneration with NaBH4. The PANI-CNTs could reduce NO2- with 93.9% N2 selectivity at initial pH of 6.8. The NO2- removal efficiency only decreased by 12.08% after five cycles of reduction/regeneration. The interconversion between imine nitrogen (-N) and amine nitrogen (-NH-) groups induced the chemical reduction of NO2- and regeneration of PANI-CNTs. PANI-CNTs exhibited an excellent performance for the removal of NO2- in the presence of competitive ions and in actual water and wastewater samples. This new PANI-CNTs composite may have great potential for water purification and wastewater denitrification.
Collapse
Affiliation(s)
- Xuemei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jinhua Deng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Congling Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Zhaoli Wang
- Chengdu Academy of Environmental Sciences, Sichuan, Chengdu, 610072, China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China; Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Sichuan, Chengdu, 610066, China.
| |
Collapse
|
3
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|