1
|
Silva JDR, Arruda HS, Andrade AC, Berilli P, Borsoi FT, Monroy YM, Rodrigues MVN, Sampaio KA, Pastore GM, Marostica Junior MR. Eugenia calycina and Eugenia stigmatosa as Promising Sources of Antioxidant Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:2039. [PMID: 39124157 PMCID: PMC11313698 DOI: 10.3390/plants13152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
In this study, Eugenia calycina and Eugenia stigmatosa, native Brazilian berries, were explored regarding their proximal composition, bioactive compounds, and antioxidant activities. The edible parts of both fruits presented a low content of lipids, proteins, and carbohydrates, resulting in a low caloric value (<70 kcal/100 g fw). E. stigmatosa fruit showed a high total fiber content (3.26 g/100 g fw), qualifying it as a source of dietary fiber. The sugar profile was mainly monosaccharides (glucose, fructose, and rhamnose). Significant contents of total phenolics and flavonoids, monomeric anthocyanins and, condensed tannins, were observed in both fruits. E. calycina contains a high level of anthocyanins, primarily cyanidin-3-glucoside (242.97 µg/g). Other phenolic compounds were also found, the main ones being rutin and ellagic acid. In contrast, E. stigmatosa is mainly composed of rutin and gallic acid. Furthermore, these fruits showed expressive antioxidant activity, evidenced by ORAC, FRAP, and ABTS. These Eugenia fruits are promising sources of bioactive compounds and have a low caloric and high dietary fiber content, making them interesting options for inclusion in a balanced diet, contributing to the promotion of health and the valorization and conservation of Brazilian biodiversity.
Collapse
Affiliation(s)
- Juliana Dara Rabêlo Silva
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Amanda Cristina Andrade
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Patrícia Berilli
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Yaneth Machaca Monroy
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Marili Villa Nova Rodrigues
- Pluridisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), University of Campinas (UNICAMP), Paulínia 13148-218, São Paulo, Brazil;
| | - Klicia Araujo Sampaio
- Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (Y.M.M.); (K.A.S.)
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food Science and Nutrition (DECAN), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (H.S.A.); (A.C.A.); (P.B.); (F.T.B.); (G.M.P.)
| |
Collapse
|
2
|
Dalmagro M, Pinc MM, Donadel G, Tominc GC, Jacomassi E, Lourenço ELB, Gasparotto Junior A, Boscarato AG, Belettini ST, Alberton O, Prochnau IS, Bariccatti RA, de Almeida RM, Rossi de Aguiar KMF, Hoscheid J. Bioprospecting a Film-Forming System Loaded with Eugenia uniflora L. and Tropaeolum majus L. Leaf Extracts for Topical Application in Treating Skin Lesions. Pharmaceuticals (Basel) 2023; 16:1068. [PMID: 37630984 PMCID: PMC10459946 DOI: 10.3390/ph16081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products can be used as complements or as alternatives to synthetic drugs. Eugenia uniflora and Tropaeolum majus are natives of Brazil and have antimicrobial, anti-inflammatory, and antioxidant activities. This study aimed to develop a film-forming system (FFS) loaded with plant extracts with the potential for treating microbial infections. E. uniflora and T. majus leaf extracts were prepared and characterized, and the individual and combined antioxidant and antimicrobial activities were evaluated. The FFS was developed with different concentrations of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and analyzed for physicochemical characteristics. The combination of extracts showed a superior antioxidant effect compared to the individual extracts, justifying the use of the blend. FFS prepared with 4.5% PVA, 4.5% PVP, 7.81% E. uniflora extract, and 3.90% T. majus extract was adhesive, lacked scale formation, presented good malleability, and had a suitable pH for topical application. In addition, the viscosity at rest was satisfactory for maintaining stability; water solubility was adequate; skin permeation was low; and the antimicrobial effect was superior to that of the individual extracts. Therefore, the developed FFS is promising for the differentiated treatment of skin lesions through topical application.
Collapse
Affiliation(s)
- Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Getulio Capello Tominc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Brazil;
| | - André Giarola Boscarato
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Salviano Tramontin Belettini
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| | - Inara Staub Prochnau
- School of Medicine and Life Sciences, Pontifical Catholic University of Paraná, Toledo 85902-532, Brazil;
| | | | - Rafael Menck de Almeida
- Synthetica Research and Technical Analysis Ltda., Capela do Alto, São Paulo 18195-000, Brazil;
| | | | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Brazil; (M.D.); (M.M.P.); (G.D.); (G.C.T.); (E.J.); (E.L.B.L.); (A.G.B.); (S.T.B.); (O.A.)
| |
Collapse
|
3
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Thermal Treatment and High-Intensity Ultrasound Processing to Evaluate the Chemical Profile and Antioxidant Activity of Amazon Fig Juices. Processes (Basel) 2023. [DOI: 10.3390/pr11020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The present paper evaluated the influence of heat treatment (HT) and high-intensity ultrasound (HIUS) on the chemical profile of the Amazon fig (Ficus subapiculata, Moraceae) juices. Antioxidant activity, quantification of carotenoids, total phenolic compounds (TPC), pH, titratable acidity, soluble solids, color and chemical profile (NMR) were evaluated. Treatments did not change the pH (3.4–3.5), titratable acidity (0.044–0.048%) and soluble solids (2.3–2.4 °Brix). The highest antioxidant activity (DPPH, ABTS) and TPC were presented by the HT-treated juice, which was equivalent to 1235 ± 11 µM TE, 1440 ± 13 µM TE and 312 ± 5 mg GAE mL−1, respectively. The treatments influenced the color luminosity according to the L* and a* parameters, while the b* parameter showed no significant change. The L* parameter was elevated in all treated samples compared to the control sample. Analyzing the parameter a* f, it was verified that the sample with thermal treatment (HT) was different from the control sample, but presented similarity with the samples of the HIUS processes. The 1H NMR spectra of the juices showed similar chemical profiles in all treatments. The compounds α-glucose, β-glucose, fructose, citric, malic, quinic, and p-hydroxybenzoic acids were identified. The HT treatment presented higher efficiency to extract the antioxidant compounds from fig juices. The HIUS treatments with constant energy density also improved the tolerance of the antioxidant compounds, especially in conditions of higher potency and reduced time. Future studies will be devoted to carry out microbiological analysis and evaluate the stability of treated juices.
Collapse
|
5
|
Strieder MM, Arruda HS, Pastore GM, Silva EK. Inulin-type dietary fiber stability after combined thermal, mechanical, and chemical stresses related to ultrasound processing of prebiotic apple beverage. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Wang P, Ma Y, Zhang C, Jia M. Considering solubility disparity and acoustic-cavitation susceptivity of neoteric solvents to accurately predict sono-recovery yield of value-added compounds. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Zabot GL, Viganó J, Silva EK. Low-Frequency Ultrasound Coupled with High-Pressure Technologies: Impact of Hybridized Techniques on the Recovery of Phytochemical Compounds. Molecules 2021; 26:5117. [PMID: 34500551 PMCID: PMC8434444 DOI: 10.3390/molecules26175117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.
Collapse
Affiliation(s)
- Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul 96508-010, Brazil;
| | - Juliane Viganó
- School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira 13484-350, Brazil;
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Eric Keven Silva
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| |
Collapse
|