1
|
Cui Y, Yang X, Zhao N, Xin X, Han D, Yan H. Sensitive extraction of seven pesticide residues from environmental water with magnetic graphene oxide-based covalent organic framework. J Chromatogr A 2024; 1732:465209. [PMID: 39106665 DOI: 10.1016/j.chroma.2024.465209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
The use of pesticides has increased with the development of agriculture. However, due to the trace content and the matrix's inherent complexity in environmental water, development of rapid and sensitive detection method present significant challenges in the analysis of pesticide residues. The study synthesized magnetic graphene oxide (MGO) by combining superparamagnetic nanoparticles with the easy modification of graphene oxide (GO). Covalent organic frameworks (COFs) were then modified to have a large specific surface area. Finally, magnetic graphene oxide-based covalent organic frameworks, namely MGO-COFs, were obtained with a spherical structure and used as magnetic solid-phase extraction materials, which was successfully used to determine the seven pesticide residues in environmental samples in conjunction with high performance liquid chromatography. The method has a wide linear range for the tested pesticides, with satisfactory correlation coefficients (R ≥ 0.099) and low detection limits (0.3-1.21 μg L-1). The correlation coefficients for all seven pesticides were high (R2 ≥ 0.9996). The spiked recoveries, exhibiting a range of 91.3 to 109 %, demonstrated that the developed MGO-COF-MSPE-HPLC-UV method is simple, efficient, and suitable for the analysis and detection of seven pesticide residues in environmental water.
Collapse
Affiliation(s)
- Yahan Cui
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiaonan Yang
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Niao Zhao
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Xuelian Xin
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China
| | - Dandan Han
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China.
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, School of Life Sciences, College of Public Health, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Li Y, Wei Q, Zhao X, Qi Y, Guo M, Liu W. Degradation of sulfamethazine by microbial electrolysis cell with nickel-cobalt co-modified biocathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16497-16510. [PMID: 38321275 DOI: 10.1007/s11356-024-32313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
In this study, nickel-cobalt co-modified stainless steel mesh (Ni-Co@SSM) was prepared and used as the biocathode in microbial electrolysis cell (MEC) for sulfamethazine (SMT) degradation. The optimal electrochemical performance of the Ni-Co@SSM was obtained at the electrodeposition time of 600 s, electrodeposition current density of 20 mA cm-2, and nickel-cobalt molar ratio of 1:2. The removal of SMT in MEC with the Ni-Co@SSM biocathode (MEC-Ni-Co@SSM) was 82%, which increased by 30% compared with the conventional anaerobic reactor. Thirteen intermediates were identified and the potential degradation pathways of SMT were proposed. Proteobacteria, Firmicutes, Patescibacteria, Chloroflexi, Bacteroidetes, and Euryarchaeota are the dominant bacteria at the phylum level in the MEC-Ni-Co@SSM, which are responsible for SMT metabolism. Due to the electrical stimulation, there was an increase in the abundance of the metabolic function and the genetic information processing. This work provides valuable insight into utilizing MECs for effective treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yabin Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Qian Wei
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Xia Zhao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - Yihan Qi
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Menghan Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Weijing Liu
- Lanzhou Sanmao Industrial LLC, Lanzhou, 730316, People's Republic of China
| |
Collapse
|
3
|
Yan L, Wang Y, Li G, Sun D, Li H, Liu C, Zhou T, Che G, You C. Preparation of Magnetic Superhydrophilic Imprinted Nanocomposite Resin and its Application in the Extraction of Chlorophenols in Water. ChemistrySelect 2023. [DOI: 10.1002/slct.202204495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Li Yan
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of chemistry Jilin Normal University Siping 136000 P.R. China
| | - Yanbo Wang
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of chemistry Jilin Normal University Siping 136000 P.R. China
| | - Guijie Li
- Jilin province product quality supervision and inspection institute Changchun 13010 P.R. China
| | - Dongshu Sun
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of Engineering Jilin Normal University Siping 136000 P.R. China
| | - Hongji Li
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of Engineering Jilin Normal University Siping 136000 P.R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of Engineering Jilin Normal University Siping 136000 P.R. China
| | - Tianyu Zhou
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of Engineering Jilin Normal University Siping 136000 P.R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of Engineering Jilin Normal University Siping 136000 P.R. China
- College of chemistry Baicheng Normal University Baicheng 137018 P.R. China
| | - Chuanxue You
- Key Laboratory of Preparation and Application of Environmenl Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 P.R. China
- College of chemistry Jilin Normal University Siping 136000 P.R. China
| |
Collapse
|
4
|
Li Q, Huang Y, Pan Z, Ni J, Yang W, Chen J, Zhang Y, Li J. Hollow C, N-TiO2@C surface molecularly imprinted microspheres with visible light photocatalytic regeneration availability for targeted degradation of sulfadiazine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Yang W, Huang C, Shen X. Water-compatible Janus molecularly imprinted particles with mouth-like opening: Rapid removal of pharmaceuticals from hospital effluents. CHEMOSPHERE 2022; 304:135350. [PMID: 35714963 DOI: 10.1016/j.chemosphere.2022.135350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals in hospital effluents, often discharged into the public sewage network without sufficient treatment, have shown negative impacts to the human health and aquatic environment. However, the conventional adsorbents used to remove these micropollutants had several deficiencies, including slow uptake kinetics and poor selectivity. To overcome these challenges, water-compatible Janus MIP particles (J-MIPs) with mouth-like openings were synthesized using seeded interfacial polymerization in this work. Among the series of J-MIPs, the selected J-MIP3 showed fast binding kinetics (∼40 s) towards the target pollutant. The theoretical and instrumental analysis suggested that the electrostatic interaction, hydrogen bond and hydrophobic reaction constituted the dominant mechanism for J-MIP3's recognition of target pharmaceutical. Selectivity and robustness tests indicated that the synthetic method was promising in practical application. Finally, the feasibility of the J-MIP3 fixed-bed column in the rapid removal of propranolol (PRO) from hospital effluents was successfully demonstrated. Compared to the activated carbon fixed-bed column, the J-MIP3 fixed-bed column showed at least 7-fold enhancement in its treatment efficiency. To the best of our knowledge, this is the first time that the accelerated mass transfer and fast removal of the pharmaceutical from wastewater have been achieved by the synthetic receptor with asymmetric structure. We believe the present study will open new avenues for the development of multi-functional molecularly imprinted polymers as well as Janus materials in environmental science.
Collapse
Affiliation(s)
- Weiyingxue Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Li J, Jiang Y, Yang J, Sun Y, Ma P, Song D. Fabrication of the Metal-Organic Framework Membrane with Excellent Adsorption Properties for Paraben Based on Micro Fibrillated Cellulose. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|