1
|
Shu J, Chen C, Yang C, Ren X, Chen G, Wang W, Zhou G, Wu Q, Tang P, Liu B. Biodegradation-assisted removal of sulfur-based odor compounds in rural drinking water using durable chitosan/polyvinyl alcohol biochar aerogels. BIORESOURCE TECHNOLOGY 2024; 418:131915. [PMID: 39617350 DOI: 10.1016/j.biortech.2024.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Rural drinking water often suffers from unpleasant odors like dimethyl sulfide (DMDS) and dimethyl trisulfide (DMTS) due to poor raw water quality and limited treatment options. This study introduces durable chitosan/polyvinyl alcohol (PVA) biochar aerogels-supported bioflims in ultrafiltration (BAB-UF) reactors, where the incorporation of PVA significantly enhances structural integrity, biodegradation resistance, and functional lifespan, providing an efficient, sustainable solution for removing odorous compounds from rural water. Experimental results showed the enhanced chitosan/PVA porous biochar aerogels (CPPCA) displayed excellent biocapacity and structural stability. After 63 days of continuous operation, the degradation rate of biochar aerogels with 0.2 wt% PVA (CP2PCA) was only 8.2 %. The one-step membrane reactors utilizing PVA-enhanced aerogels achieved removal efficiencies for DMDS/DMTS pollutants of up to 98.4 %, surpassing systems without PVA. These findings indicate the potential for improved aerogels in rural drinking water treatment, providing a viable solution for effective and low-maintenance water purification.
Collapse
Affiliation(s)
- Jingyu Shu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Chengdu Municipal Engineering Design & Research Institute Co., Ltd., Sichuan 610207, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, PR China
| | - Chunyan Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xiaoyu Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Guijing Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Wenjie Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Guanyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Qidong Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
2
|
Chen X, Zhao G, Yang Z, Li Q. Molecular comparison of organic matter removal from shale gas flowback wastewater: Ozonation versus Fenton process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167147. [PMID: 37730067 DOI: 10.1016/j.scitotenv.2023.167147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Shale gas extraction process generates a large amount of shale gas flowback wastewater (SGFW) containing refractory organic compounds, which can pose serious environmental threats if not properly treated. However, the extremely complex compositions of organics in SGFW are still unknown and their transformation pathways in O3- and •OH-dominated systems are not well recognized, which restrain the selection of treatment technology and optimization of operational parameters. The removal characteristics and reaction mechanism of dissolved organic matter (DOM) in SGFW treated by ozonation and Fenton processes were comparatively investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results showed that both processes could degrade low-oxygen highly unsaturated and phenolic organics, polyphenolics and polycyclic aromatics, and transform them into aliphatic organics and high-oxygen highly unsaturated and phenolic organics. With increasing action of reactive oxygen species (O3 for ozonation and •OH for Fenton process), the degradation products (mainly aliphatic organics) increased during ozonation. However, in Fenton process, a wider range of DOM was removed without aliphatic organics accumulation. The degradation mechanisms of DOM during ozonation and Fenton processes included oxygen addition reactions (+3O, +H2O2, and +2O) as dominant pathways. However, ozonation showed more violent oxygenation, hydroxylation, and carboxylation, while Fenton process presented more violent chain-breaking reactions. These results revealed the selective oxidation of ozone and nonselective oxidation of •OH during SGFW treatment, and provided theoretical support for selecting SGFW treatment approaches.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Guonan Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Zhuowen Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, 611756, China.
| |
Collapse
|
3
|
Wang X, Xiong Y, Yuan B, Wu Y, Hu W, Wang X, Liu W. Performances and mechanisms of the peroxymonosulfate/ferrate(VI) oxidation process in real shale gas flowback water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119355. [PMID: 37857222 DOI: 10.1016/j.jenvman.2023.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610095, China
| | - Bo Yuan
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - You Wu
- Sichuan Zaojing Baicui Environmental Protection Technology Co., Ltd., Chengdu, 610095, China
| | - Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
4
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
5
|
Wu Q, Chen C, Zhang Y, Tang P, Ren X, Shu J, Liu X, Cheng X, Tiraferri A, Liu B. Safe purification of rural drinking water by biological aerated filter coupled with ultrafiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161632. [PMID: 36657675 DOI: 10.1016/j.scitotenv.2023.161632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Water resources of many rural areas are usually lakes or reservoirs, which can be easily affected by run-off, non-point source pollution and are often of poorer quality compared with urban water sources. Drinking water supply in remote rural areas usually suffers from various challenges, such as the high cost of construction and maintenance of centralized drinking water treatment plants and pipe networks, due to the dispersed nature of villages, which are often located in varied and complex topographies. In this study, a combined process comprising biological aerated filter (BAF) combined with ultrafiltration was developed to treat polluted reservoir water. Organic matter indexes, turbidity, and chroma were used as indicators for the evaluation of the system performance. In a long-term experiment lasting 260 days, the combined process was tested under different values of critical operational parameters, including filler types and empty bed contact time (EBCT). Furthermore, the microbial communities in different BAF reactors were carefully evaluated at different times, finding that microorganisms with specific functions were enriched in the various BAF reactors. The combined process reached 85.5 % removal rate of DOC with an EBCT of 45 min and using granule active carbon (GAC) as filler. Most of the effluents of BAF reactors met the requirements for drinking water in China. The combined system showed practical potential for polluted water treatment in some rural areas.
Collapse
Affiliation(s)
- Qidong Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, PR China
| | - Yongli Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xiaoyu Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xinyu Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Cheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
6
|
Chen G, Xie W, Chen C, Wu Q, Qin S, Liu B. Preparation of High Flux Chlorinated Polyvinyl Chloride Composite Ultrafiltration Membranes with Ternary Amphiphilic Copolymers as Anchor Pore-Forming Agents and Enhanced Anti-Fouling Behavior. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guijing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan610207, PR China
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
| | - Wancen Xie
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan610207, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan571126, PR China
| | - Qidong Wu
- Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Avenue, Cuiping District, Yibin, Sichuan644000, PR China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan610207, PR China
| | - Shuhao Qin
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang550014, China
| | - Baicang Liu
- Institute for Disaster Management and Reconstruction, State Key Laboratory of Hydraulics and Mountain River Engineering, Institute of New Energy and Low-Carbon Technology, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan610207, PR China
| |
Collapse
|
7
|
Xie W, Chen G, Chen C, Song Z, Wu Q, Tian L, Dai Z, Liang S, Tang P, Zhang X, Ma J, Liu B. Polydopamine/ polyethyleneimine/ MOF ternary-coated poly (vinyl chloride) nanocomposite membranes based on green solvent for shale gas wastewater treatment. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Liang J, Xie T, Liu Y, Wu Q, Bai Y, Liu B. Granular activated carbon (GAC) fixed bed adsorption combined with ultrafiltration for shale gas wastewater internal reuse. ENVIRONMENTAL RESEARCH 2022; 212:113486. [PMID: 35597290 DOI: 10.1016/j.envres.2022.113486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.
Collapse
Affiliation(s)
- Jiaxin Liang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China
| | - Tianqiao Xie
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China
| | - Yuanhui Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China
| | - Qidong Wu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China
| | - Yuhua Bai
- Infrastructure Construction Department, Chengdu University, Chengdu, 610106, PR China
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Engineering Research Center of Alternative Energy Materials & Devices (Ministry of Education), Institute of New Energy and Low-Carbon Technology, Chengdu, Sichuan, 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan, 644000, PR China.
| |
Collapse
|
9
|
Mao Z, Cheng L, Liu D, Li T, Zhao J, Yang Q. Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives. ACS OMEGA 2022; 7:29543-29570. [PMID: 36061652 PMCID: PMC9434759 DOI: 10.1021/acsomega.2c02897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The application of hydraulic fracturing stimulation technology to improve the productivity of unconventional oil and gas reservoirs is a well-established practice. With the increasing exploration and development of unconventional oil and gas resources, the associated geological conditions and physical properties are gradually becoming more and more complex. Therefore, it is necessary to develop technologies that can improve the development benefits to meet these challenges. In recent years, improving the effect of hydraulic fracturing stimulation in unconventional oil and gas reservoirs through the use of nanomaterials and technologies has attracted increasing attention. In this paper, we review the current status and research progress of the application of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, expound the mechanism and advantages of these nanomaterials and technologies in detail, and provide future research directions. The reviewed literature indicates that nanomaterials and technologies show exciting potential applications in the hydraulic fracturing of unconventional reservoirs; for example, the sand-carrying and rheological properties of fracturing fluids can be significantly enhanced through the addition of nanomaterials. The use of nanomaterials to modify proppants can improve their compressive strength, thus meeting the needs of different reservoir conditions. The fracturing flowback fluid treatment efficiency and purification effect can be improved through the use of nanophotocatalysis and nanomembrane technologies, while degradable fracturing completion tools developed based on nanomaterials can effectively improve the efficiency of fracturing operations. Nanorobots and magnetic nanoparticles can be used to more efficiently monitor hydraulic fracturing and to accurately map the hydraulic fracture morphology. However, due to the complex preparation process and high cost of nanomaterials, more work is needed to fully investigate the application mechanisms of nanomaterials and technologies, as well as to evaluate the economic feasibility of these exciting technologies. The main research objective of this review is to comprehensively summarize the application and research progress of nanomaterials and technologies in various aspects of hydraulic fracturing in unconventional oil and gas reservoirs, analyze the existing problems and challenges, and propose some targeted forward-looking recommendations, which may be helpful for future research and applications.
Collapse
Affiliation(s)
- Zheng Mao
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Liang Cheng
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Dehua Liu
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Ting Li
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
- Key
Laboratory of Oil and Gas Resources and Exploration Technology, Ministry of Education, Wuhan 430100, China
- Key
Laboratory of Drilling and Production Engineering for Oil and Gas, Hubei province, Wuhan 430100, China
| | - Jie Zhao
- College
of Petroleum Engineering, Yangtze University, Wuhan 430100, China
| | - Qi Yang
- China
United Coal-bed Methane Co., Ltd., Beijing 100020, China
| |
Collapse
|
10
|
Zhou Y, Jiang Y, Zhang Y, Tan L. Improvement of Antibacterial and Antifouling Properties of a Cellulose Acetate Membrane by Surface Grafting Quaternary Ammonium Salt. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38358-38369. [PMID: 35950600 DOI: 10.1021/acsami.2c09963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Through etherification reaction, epoxy propyl dimethyl dodecyl ammonium chloride (EPDMDAC) was grafted onto the surface of a cellulose acetate (CA) membrane to prepare a stable nonleaching antibacterial antifouling membrane (QCA-X). The results showed that with the extension of grafting reaction time, the quaternary ammonium salt groups on the membrane surface increased and the hydrophilicity was enhanced. Compared with those of the CA membrane, the filtration capacity and antifouling performance of the QCA-X membrane are improved. When the grafting time is 4 h, the water permeability and flux recovery rate of the QCA-4 membrane are increased by 139 and 21.5%, respectively. The QCA-X membrane showed excellent antibacterial performance, and the sterilization rate against S. aureus and E. coli was more than 99.99%. After four repeated antibacterial cycles, the bactericidal rates against S. aureus and E. coli were maintained at about 99.69 ± 0.02 and 99.98 ± 0.02%, respectively, with good antibacterial persistence. Moreover, the QCA-X membrane can effectively inhibit bacterial adhesion. Mild and simple EPDMDAC grafting modifications improve the antibacterial, antifouling, and antibioadhesion properties of the CA membrane, showing its application potential in long-term water treatment, especially in biofouling water treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|