1
|
Bagastyo AY, Sidik F, Anggrainy AD, Lin JL, Direstiyani LC, Nurhayati E. Simultaneous removal of organic and nitrogenous compounds in mature landfill leachate by a hybrid electro-oxidation-dialysis (EOD) system. ENVIRONMENTAL TECHNOLOGY 2024; 45:867-879. [PMID: 36169980 DOI: 10.1080/09593330.2022.2130102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical process has been widely applied to eliminate recalcitrant contaminants (i.e., organic and nitrogenous compounds) in landfill leachate. This study aimed to evaluate the performance of a hybrid electro-oxidation-dialysis (EOD) system to minimize organic and nitrogenous compounds through a synergistic process of electrochemical oxidation (EO) and electrodialysis (ED) as well as the dissolved organic matter was characterized in terms of fluorescent component and molecular weight distribution. The EOD was carried out using boron-doped diamond (BDD) and Pt alternately. The results have shown that pH adjustment to acidic conditions is beneficial to EO. At optimal pH (pH 4), BDD-based EO is superior to removing COD and NH 4 + up to around 56% and 64%, respectively. During EOD process, the lower current density at 20.83 mA cm-2 is preferred for the recovery of nitrogenous ions (i.e. NH 4 + and NO 3 - ), especially for BDD-EOD. In addition, the dominant humic acid-like (HAL) and soluble microbial products-like (SMPL) substances in the mature leachate are mostly degraded to smaller molecules from 105 Da to 103 Da in both EOD processes. Overall, BDD-EOD favours indirect oxidation and has a higher energy consumption efficiency than Pt-EOD induced by direct oxidation for simultaneous removal of organic and nitrogenous compounds. BDD-EOD requires a lower total operation cost of around $2.33/m3 compared to Pt-EOD. It is concluded that the hybrid BDD-EOD process is technically feasible as a powerful pre-treatment approach to mature landfill leachate for refractory organics degradation and nitrogenous nutrients recovery.
Collapse
Affiliation(s)
- Arseto Yekti Bagastyo
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Fahrudin Sidik
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Anita Dwi Anggrainy
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Jr-Lin Lin
- Department of Environmental Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
- Center for Environmental Risk Management, College of Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Lucky Caesar Direstiyani
- Environmental Engineering Study Program, Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Indonesia
| | - Ervin Nurhayati
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Research Centre for Infrastructure and Sustainable Environment, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
2
|
Pismenskaya N, Rybalkina O, Solonchenko K, Pasechnaya E, Sarapulova V, Wang Y, Jiang C, Xu T, Nikonenko V. How Chemical Nature of Fixed Groups of Anion-Exchange Membranes Affects the Performance of Electrodialysis of Phosphate-Containing Solutions? Polymers (Basel) 2023; 15:polym15102288. [PMID: 37242863 DOI: 10.3390/polym15102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Innovative ion exchange membranes have become commercially available in recent years. However, information about their structural and transport characteristics is often extremely insufficient. To address this issue, homogeneous anion exchange membranes with the trade names ASE, CJMA-3 and CJMA-6 have been investigated in NaxH(3-x)PO4 solutions with pH 4.4 ± 0.1, 6.6 and 10.0 ± 0.2, as well as NaCl solutions with pH 5.5 ± 0.1. Using IR spectroscopy and processing the concentration dependences of the electrical conductivity of these membranes in NaCl solutions, it was shown that ASE has a highly cross-linked aromatic matrix and mainly contains quaternary ammonium groups. Other membranes have a less cross-linked aliphatic matrix based on polyvinylidene fluoride (CJMA-3) or polyolefin (CJMA-6) and contain quaternary amines (CJMA-3) or a mixture of strongly basic (quaternary) and weakly basic (secondary) amines (CJMA-6). As expected, in dilute solutions of NaCl, the conductivity of membranes increases with an increase in their ion-exchange capacity: CJMA-6 < CJMA-3 << ASE. Weakly basic amines appear to form bound species with proton-containing phosphoric acid anions. This phenomenon causes a decrease in the electrical conductivity of CJMA-6 membranes compared to other studied membranes in phosphate-containing solutions. In addition, the formation of the neutral and negatively charged bound species suppresses the generation of protons by the "acid dissociation" mechanism. Moreover, when the membrane is operated in overlimiting current modes and/or in alkaline solutions, a bipolar junction is formed at the CJMA- 6/depleted solution interface. The CJMA-6 current-voltage curve becomes similar to the well-known curves for bipolar membranes, and water splitting intensifies in underlimiting and overlimiting modes. As a result, energy consumption for electrodialysis recovery of phosphates from aqueous solutions almost doubles when using the CJMA-6 membrane compared to the CJMA-3 membrane.
Collapse
Affiliation(s)
- Natalia Pismenskaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Olesya Rybalkina
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Ksenia Solonchenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Evgeniia Pasechnaya
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Veronika Sarapulova
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| | - Yaoming Wang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chenxiao Jiang
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Victor Nikonenko
- Russian Federation, Kuban State University, 149, Stavropolskaya Str., 350040 Krasnodar, Russia
| |
Collapse
|
3
|
Chen W, Shen H, Gong Y, Li P, Cheng C. Anion exchange membranes with efficient acid recovery obtained by quaternized poly epichlorohydrin and polyvinyl alcohol during diffusion dialysis. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Cournoyer A, Bazinet L. Electrodialysis Processes an Answer to Industrial Sustainability: Toward the Concept of Eco-Circular Economy?-A Review. MEMBRANES 2023; 13:205. [PMID: 36837708 PMCID: PMC9962313 DOI: 10.3390/membranes13020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Wastewater and by-product treatments are substantial issues with consequences for our society, both in terms of environmental impacts and economic losses. With an overall global objective of sustainable development, it is essential to offer eco-efficient and circular solutions. Indeed, one of the major solutions to limit the use of new raw materials and the production of wastes is the transition toward a circular economy. Industries must find ways to close their production loops. Electrodialysis (ED) processes such as conventional ED, selective ED, ED with bipolar membranes, and ED with filtration membranes are processes that have demonstrated, in the past decades and recently, their potential and eco-efficiency. This review presents the most recent valorization opportunities among different industrial sectors (water, food, mining, chemistry, etc.) to manage waste or by-product resources through electrodialysis processes and to improve global industrial sustainability by moving toward circular processes. The limitations of existing studies are raised, especially concerning eco-efficiency. Indeed, electrodialysis processes can be optimized to decrease energy consumption and costs, and to increase efficiency; however, eco-efficiency scores should be determined to compare electrodialysis with conventional processes and support their advantages. The review shows the high potential of the different types of electrodialysis processes to treat wastewaters and liquid by-products in order to add value or to generate new raw materials. It also highlights the strong interest in using eco-efficient processes within a circular economy. The ideal scenario for sustainable development would be to make a transition toward an eco-circular economy.
Collapse
Affiliation(s)
| | - Laurent Bazinet
- Department of Food Sciences, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
He J, Zhou R, Dong Z, Yan J, Ma X, Liu W, Sun L, Li C, Yan H, Wang Y, Xu T. Bipolar Membrane Electrodialysis for Cleaner Production of Diprotic Malic Acid: Separation Mechanism and Performance Evaluation. MEMBRANES 2023; 13:197. [PMID: 36837700 PMCID: PMC9961052 DOI: 10.3390/membranes13020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Bipolar membrane electrodialysis (BMED) is a promising process for the cleaner production of organic acid. In this study, the separation mechanism of BMED with different cell configurations, i.e., BP-A, BP-A-C, and BP-C (BP, bipolar membrane; A, anion exchange membrane; C, cation exchange membrane), to produce diprotic malic acid from sodium malate was compared in consideration of the conversion ratio, current efficiency and energy consumption. Additionally, the current density and feed concentration were investigated to optimize the BMED performance. Results indicate that the conversion ratio follows BP-C > BP-A-C > BP-A, the current efficiency follows BP-A-C > BP-C > BP-A, and the energy consumption follows BP-C < BP-A-C < BP-A. For the optimized BP-C configuration, the current density was optimized as 40 mA/cm2 in consideration of low total process cost; high feed concentration (0.5-1.0 mol/L) is more feasible to produce diprotic malic acid due to the high conversion ratio (73.4-76.2%), high current efficiency (88.6-90.7%), low energy consumption (0.66-0.71 kWh/kg) and low process cost (0.58-0.59 USD/kg). Moreover, a high concentration of by-product NaOH (1.3497 mol/L) can be directly recycled to the upstream process. Therefore, BMED is a cleaner, high-efficient, low energy consumption and environmentally friendly process to produce diprotic malic acid.
Collapse
Affiliation(s)
- Jinfeng He
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Rong Zhou
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiguo Dong
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Junying Yan
- Anhui Provincial Engineering Laboratory for Functional Membranes, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xixi Ma
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenlong Liu
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Li Sun
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Chuanrun Li
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Haiyang Yan
- School of Pharmacy, Pharmaceutical Engineering Technology Research Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Yaoming Wang
- Anhui Provincial Engineering Laboratory for Functional Membranes, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory for Functional Membranes, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Liu W, He J, Yan J, Tian Z, Li Q, Wang H, Li C, Wang Y, Yan H. Simultaneous salt recovery and zwitterionic stachydrine purification from saline eluent via two-stage electrodialysis system. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Díaz AI, Laca A, Díaz M. Approach to a fungal treatment of a biologically treated landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116085. [PMID: 36063693 DOI: 10.1016/j.jenvman.2022.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
White-rot fungi (WRF) have the ability to synthetize extracellular enzymes that could degrade recalcitrant pollutants. The aim of this work was to evaluate the use of P. chrysosporium to treat a biologically and physically pre-treated landfill leachate which high load of refractory compounds (COD>1000 mg/L, BOD5<50 mg/L) in order to reduce COD and colour. Batch tests were carried out at 26 °C and 135 rpm for 15 days. The soluble chemical oxygen demand (sCOD), soluble biological oxygen demand (sBOD5) and colour, as well as the lignin peroxidase (LiP) and manganese peroxidase (MnP) enzymatic activities were analysed. Besides, the effects of different operating conditions, i.e., pH control, permeate dilution and supplementation, on treatment efficacy were investigated. The control of pH was shown to be key for fungal treatment. In addition, it was found that the addition of carbon and nitrogen sources improved the enzymatic synthesis and the removals of sCOD and colour. Data here obtained open the possibility of using fungi for reducing the amount of recalcitrant pollutants still present in treated landfill leachates or similar effluents.
Collapse
Affiliation(s)
- Ana Isabel Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| |
Collapse
|
9
|
Hussain A, Yan H, Ul Afsar N, Wang H, Yan J, Jiang C, Wang Y, Xu T. Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Zero Liquid Discharge System for the Tannery Industry—An Overview of Sustainable Approaches. RECYCLING 2022. [DOI: 10.3390/recycling7030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tannery industry is characterized by the consumption of a large quantity of water, around 30–40 m3 for processing 1000 kg of hide or skin. This amount becomes wastewater, containing about 300 kg of different chemicals, mainly refractory organic compounds, with high chemical oxygen demand (COD), total dissolved salts (TDS), chromium, and evolution of toxic gases, such as ammonia and sulfides, etc. The remaining tanning chemicals are released as effluent having high resistance against biological degradation, becoming a serious environmental issue. Usually, end-of-pipe treatment is not sufficient to meet the concerns of environmental issues. In terms of cleaner production options, the redesigning of the existing effluent treatment procedures with alternate or additional treatment techniques, which “supports resource recovery with no added chemicals”, is expected to give a sustainable solution for the management of toxic effluent. The Zero Liquid Discharge (ZLD) system serves to ensure zero water emission, as well as treatment facilities by recycling, recovery, and reuse of the treated wastewater using advanced cleanup technology. The international scenario shows the implementation of ZLD thanks to pressure from regulatory agencies. The ZLD system consists of a pre-treatment system with conventional physicochemical treatment, tertiary treatment, softening of the treated effluent, reverse osmosis (RO) treatment for desalination, and thermal evaporation of the saline reject from RO to separate the salts. By adopting this system, water consumption is reduced. Moreover, ZLD also becomes effective in disaster mitigation in areas where the tannery industry is a strong economic actor. With this review, we aim to give an outlook of the current framework.
Collapse
|
11
|
Fu R, Yan H, Zhu Y, Wang H, Lu F, Su Y, Li W, Fu R, Liu Z, An J, Wang Y. Separation and concentration of ultrafiltration permeate from landfill leachate effluent using polymeric membrane electrodialysis. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rong Fu
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Haiyang Yan
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Yaru Zhu
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Huangying Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Feipeng Lu
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Ya Su
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Wei Li
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| | - Rongqiang Fu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd. Weifang People's Republic of China
| | - Zhaoming Liu
- Key Laboratory of Charged Polymeric Membrane Materials of Shandong Province Shandong Tianwei Membrane Technology Co., Ltd. Weifang People's Republic of China
| | - Jin An
- Institute of Integrated Environmental Technology, Everbright Green Technology & Innovation China Everbright Environment Group Limited Nanjing People's Republic of China
| | - Yaoming Wang
- Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|