1
|
Palanisamy G, Bhosale M, Magdum SS, Thangarasu S, Oh TH. Hybridization of Polymer-Encapsulated MoS 2-ZnO Nanostructures as Organic-Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation. Polymers (Basel) 2024; 16:2213. [PMID: 39125239 PMCID: PMC11314569 DOI: 10.3390/polym16152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron-hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2- and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.B.); (S.S.M.); (S.T.)
| | | | | | | | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.B.); (S.S.M.); (S.T.)
| |
Collapse
|
2
|
He M, Li D, Liu Y, Li T, Li F, Fernández-Catalá J, Cao W. One-pot hydrothermal synthesis of FeNbO 4 microspheres for effective sonocatalysis. NEW J CHEM 2024; 48:6704-6713. [PMID: 38628578 PMCID: PMC11018166 DOI: 10.1039/d3nj05239g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
FeNbO4 sonocatalysts were successfully synthesized by a simple hydrothermal route at pH values of 3, 5, 7, 9 and 11. The catalysts were characterized by XRD, XPS, TEM, SEM, N2 adsorption and DRS to analyse the effect of pH parameters on the physicochemical properties of the materials during hydrothermal synthesis. The sonocatalytic activity of FeNbO4 microspheres was evaluated by using acid orange 7 (AO7) as the simulated contaminant. The experimental results showed that the best sonocatalytic degradation ratio (97.45%) of organic dyes could be obtained under the conditions of an initial AO7 concentration of 10 mg L-1, an ultrasonic power of 200 W, a catalyst dosage of 1.0 g L-1, and a pH of 3. Moreover, the sonocatalysts demonstrated consistent durability and stability across multiple test cycles. After active species capture experiments and calculation of the energy band, a possible mechanism was proposed based on the special Fenton-like mechanism and the dissociation of H2O2. This research shows that FeNbO4 microspheres can be used as sonocatalysts for the purification of organic wastewater, which has a promising application prospect.
Collapse
Affiliation(s)
- Min He
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Defa Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Yu Liu
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Javier Fernández-Catalá
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante Ap. 99 Alicante 03080 Spain
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| |
Collapse
|
3
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Haddadi S, Khataee A, Arefi-Oskoui S, Vahid B, Orooji Y, Yoon Y. Titanium-based MAX-phase with sonocatalytic activity for degradation of oxytetracycline antibiotic. ULTRASONICS SONOCHEMISTRY 2023; 92:106255. [PMID: 36502683 PMCID: PMC9763513 DOI: 10.1016/j.ultsonch.2022.106255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 05/27/2023]
Abstract
In light of growing environmental concerns over emerging contaminants in aquatic environments, antibiotics in particular, have prompted the development of a new generation of effective sonocatalytic systems. In this study, a new type of nano-laminated material, Ti2SnC MAX phase, is prepared, characterized, and evaluated for the sonocatalytic degradation of oxytetracycline (OTC) antibiotic. A variety of identification analyses, including X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, Brunauer-Emmett-Teller, and diffuse reflectance spectroscopy, were conducted to determine the physicochemical properties of the synthesized catalyst. By optimizing the operating factors, total degradation of OTC occurs within 120 min with 1 g L-1 catalyst, 10 mg L-1 OTC, at natural pH of 7.1 and 150 W ultrasonic power. The scavenger studies conclude that the singlet oxygen and superoxide ions are the most active species during the sonocatalytic reaction. Based on the obtained data and GC-MS analysis, a possible sonocatalytic mechanism for the OTC degradation in the presence of Ti2SnC is proposed. The catalyst reusability within eight consecutive runs reveals the proper stability of Ti2SnC MAX phase. The results indicate the prospect for MAX phase-based materials to be developed as efficient sonocatalysts in the treatment of antibiotics, suggesting a bright future for the field.
Collapse
Affiliation(s)
- Samira Haddadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| | - Samira Arefi-Oskoui
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran; Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran
| | - Behrouz Vahid
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
5
|
Akdağ S, Sadeghi Rad T, Keyikoğlu R, Orooji Y, Yoon Y, Khataee A. Peroxydisulfate-assisted sonocatalytic degradation of metribuzin by La-doped ZnFe layered double hydroxide. ULTRASONICS SONOCHEMISTRY 2022; 91:106236. [PMID: 36442410 PMCID: PMC9709225 DOI: 10.1016/j.ultsonch.2022.106236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/12/2023]
Abstract
Metribuzin is an herbicide that easily contaminates ground and surface water. Herein, La-doped ZnFe layered double hydroxide (LDH) was synthesized for the first time and used for the degradation of metribuzin via ultrasonic (US) assisted peroxydisulfate (PDS) activation. The synthesized LDH had a lamellar structure, an average thickness of 26 nm, and showed mesoporous characteristics, including specific surface area 110.93 m2 g-1, pore volume 0.27 cm3 g-1, and pore diameter 9.67 nm. The degradation efficiency of the US/La-doped ZnFe LDH/PDS process (79.1 %) was much greater than those of the sole processes, and the synergy factor was calculated as 3.73. The impact of the reactive species on the sonocatalytic process was evaluated using different scavengers. After four consecutive cycles, 10.8 % loss occurred in the sonocatalytic activity of the La-doped LDH. Moreover, the efficiency of the US/La-doped LDH/PDS process was studied with respect to the degradation of metribuzin in a wastewater matrix. According to GC-MS analysis, six by-products were detected during the degradation of metribuzin. Our results indicate that the US/La-doped ZnFe LDH/PDS process has great potential for efficient degradation of metribuzin-contaminated water and wastewater.
Collapse
Affiliation(s)
- Sultan Akdağ
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Tannaz Sadeghi Rad
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, South Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| |
Collapse
|
6
|
Mahmoudi F, Saravanakumar K, Maheskumar V, Njaramba LK, Yoon Y, Park CM. Application of perovskite oxides and their composites for degrading organic pollutants from wastewater using advanced oxidation processes: Review of the recent progress. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129074. [PMID: 35567810 DOI: 10.1016/j.jhazmat.2022.129074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
In the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs). This review article is to provide overview of basic principle and different methods of AOPs, while the strategies to design novel perovskite oxide-based composites for enhancing the catalytic activities in AOPs have been highlighted. Moreover, the recent progress of their synthesis and applications in wastewater remediation (pertaining to the period 2016-2022) was described, and the related mechanisms were thoroughly discussed. This review article helps scientists to have a clear outlook on the selection and design of new effective perovskite oxide-based materials for the application of AOPs. At the end of the review, perspective on the challenges and future research directions are discussed.
Collapse
Affiliation(s)
- Farzaneh Mahmoudi
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Velusamy Maheskumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
7
|
Gao H, Wang S, Wang Y, Yang H, Wang F, Tang S, Yi Z, Li D. CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|