1
|
Kumar S, Aldaqqa NM, Alhseinat E, Shetty D. Electrode Materials for Desalination of Water via Capacitive Deionization. Angew Chem Int Ed Engl 2023; 62:e202302180. [PMID: 37052355 DOI: 10.1002/anie.202302180] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/14/2023]
Abstract
Recent years have seen the emergence of capacitive deionization (CDI) as a promising desalination technique for converting sea and wastewater into potable water, due to its energy efficiency and eco-friendly nature. However, its low salt removal capacity and parasitic reactions have limited its effectiveness. As a result, the development of porous carbon nanomaterials as electrode materials have been explored, while taking into account of material characteristics such as morphology, wettability, high conductivity, chemical robustness, cyclic stability, specific surface area, and ease of production. To tackle the parasitic reaction issue, membrane capacitive deionization (mCDI) was proposed which utilizes ion-exchange membranes coupled to the electrode. Fabrication techniques along with the experimental parameters used to evaluate the desalination performance of different materials are discussed in this review to provide an overview of improvements made for CDI and mCDI desalination purposes.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Najat Maher Aldaqqa
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Emad Alhseinat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis & Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Wang Z, Gao M, Peng J, Miao L, Chen W, Ao T. Nanoarchitectonics of heteroatom-doped hierarchical porous carbon derived from carboxymethyl cellulose carbon aerogel and metal-organic framework for capacitive deionization. Int J Biol Macromol 2023; 241:124596. [PMID: 37116842 DOI: 10.1016/j.ijbiomac.2023.124596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Capacitive deionization (CDI) using porous materials offers a sustainable solution for providing affordable freshwater, but the low salt adsorption rate of benchmark carbon materials significantly limit the practical implementation. Herein, we utilized carboxymethyl cellulose sodium (CMC) as the carbon skeleton to produce a composite carbon aerogel loaded with ZIF-8 (ZIF-8/CMC-CA). The presence of ZIF-8 nanoparticles improved the pore structure of the material and provides a certain pseudo capacitance by introducing N. Compared with ZIF-8 derived carbons (ZIF-8-C), the CMC provided a good three-dimensional structure for the dispersion of ZIF-8 nanoparticles, reduced the agglomeration of particles. Furthermore, numerous carboxyl and hydroxyl groups on CMC enhanced the hydrophilicity of materials. Due to the interconnected structure, ZIF-8/CMC-CA exhibited excellent conductivity, a high specific surface area, and offered suitable channels for the rapid entry and exit of ions. In a three-electrode system, the total specific capacitance of the ZIF-8/CMC-CA electrode was 357.14 F g-1. The adsorption rate of ZIF-8/CMC-CA was 2.02 mg g-1 min-1 in a 500 mg L-1 NaCl solution. This study may provide new insight for modifying and fabricating electrode materials for practical CDI applications.
Collapse
Affiliation(s)
- Zhen Wang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jie Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Tang Y, Ding J, Zhou W, Cao S, Yang F, Sun Y, Zhang S, Xue H, Pang H. Design of Uniform Hollow Carbon Nanoarchitectures: Different Capacitive Deionization between the Hollow Shell Thickness and Cavity Size. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206960. [PMID: 36658723 PMCID: PMC10037972 DOI: 10.1002/advs.202206960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based materials with high capacitance ability and fast electrosorption rate are ideal electrode materials in capacitive deionization (CDI). However, traditional carbon materials have structural limitations in electrochemical and desalination performance due to the low capacitance and poor transmission channel of the prepared electrodes. Therefore, reasonable design of electrode material structure is of great importance for achieving excellent CDI properties. Here, uniform hollow carbon materials with different morphologies (hollow carbon nanospheres, hollow carbon nanorods, hollow carbon nano-pseudoboxes, hollow carbon nano-ellipsoids, hollow carbon nano-capsules, and hollow carbon nano-peanuts) are reasonably designed through multi-step template method and calcination of polymer precursors. Hollow carbon nanospheres and hollow carbon nano-pseudoboxes exhibit better capacitance and higher salt adsorption capacity (SAC) due to their stable carbonaceous structure during calcination. Moreover, the effects of the thickness of the shell and the size of the cavity on the CDI performance are also studied. HCNSs-0.8 with thicker shell (≈20 nm) and larger cavity (≈320 nm) shows the best SAC value of 23.01 mg g-1 due to its large specific surface area (1083.20 m2 g-1 ) and rich pore size distribution. These uniform hollow carbon nanoarchitectures with functional properties have potential applications in electrochemistry related fields.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiani Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenxuan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Feiyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
4
|
Wu T, Chen X, Zhang H, Zhao M, Huang L, Yan J, Su M, Liu X. MoS2-encapsulated nitrogen-doped carbon bowls for highly efficient and selective removal of copper ions from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Hierarchical N-Doped porous 3D network electrode with enhanced capacitive deionization performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|