1
|
Xu B, Gao W, Liao B, Bai H, Qiao Y, Turek W. A Review of Temperature Effects on Membrane Filtration. MEMBRANES 2023; 14:5. [PMID: 38248695 PMCID: PMC10819527 DOI: 10.3390/membranes14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Membrane technology plays a vital role in drinking water and wastewater treatments. Among a number of factors affecting membrane performance, temperature is one of the dominant factors determining membrane performance. In this review, the impact of temperature on membrane structure, fouling, chemical cleaning, and membrane performance is reviewed and discussed with a particular focus on cold temperature effects. The findings from the literature suggest that cold temperatures have detrimental impacts on membrane structure, fouling, and chemical cleaning, and thus could negatively affect membrane filtration operations and performance, while warm and hot temperatures might expand membrane pores, increase membrane flux, improve membrane chemical cleaning efficiency, and interfere with biological processes in membrane bioreactors. The research gaps, challenges, and directions of temperature effects are identified and discussed indepth. Future studies focusing on the impact of temperature on membrane processes used in water and wastewater treatment and the development of methods that could reduce the adverse effect of temperature on membrane operations are needed.
Collapse
Affiliation(s)
- Bochao Xu
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada;
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Hao Bai
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Yuhang Qiao
- Department of Mechanical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada; (H.B.); (Y.Q.)
| | - Walter Turek
- Environment Division, City of Thunder Bay, Victoriaville Civic Centre, 111 Syndicate Ave S., Thunder Bay, ON P7E 6S4, Canada;
| |
Collapse
|
2
|
Mei Q, Zheng P, Ma W, Han I, Zhan M, Wu B. New insight into the irreversible membrane fouling in different pore-sized ultrafiltration ceramic membrane bioreactors (UCMBRs) for high-strength textile wastewater treatment. CHEMOSPHERE 2023; 331:138773. [PMID: 37105308 DOI: 10.1016/j.chemosphere.2023.138773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/16/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Despite great achievements in ceramic membrane bioreactor applications, membrane fouling, which decreases the permeability and separation performance of bioreactors and is associated with increased operational costs and energy consumption, remains a problem. The aim of this study was to expand our understanding of the fouling behavior in the long-term performance of ultrafiltration ceramic membrane bioreactors (UCMBRs) for high-strength textile wastewater reclamation. Using real textile wastewater effluent, the effects of ultrafiltration (UF) membrane pore sizes, cleaning strategies, and foulant distribution were systematically evaluated over more than three months of continuous operation. The results showed that UCMBR system achieved chemical oxygen demand and total nitrogen removal efficiencies as high as 91-95% and 39-43%, respectively. The high PN concentration can easily increase the viscosity of mixed liquor samples, contributing to a fouling layer on the membrane surface. In addition, the fouling layer formed on the surface of small-pore-sized ceramic UF membranes was not completely reversible but was difficult to eliminate by simple physical cleaning. Soluble extracellular polymeric substances, especially proteins and low molecular weight neutrals, remained, resulting in irreversible fouling on the UF membrane. However, saturated CO2 backwash showed great potential for enhancing the system through efficient fouling control without using environmentally unfriendly cleaning chemicals. The cake-intermediate and complete-standard models were suitable for explaining the fouling mechanism in the large- and small-pore-sized UF membranes, respectively.
Collapse
Affiliation(s)
- Qiwen Mei
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Pengfei Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wenhao Ma
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Ihnsup Han
- Department of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Min Zhan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Díaz V, Antiñolo L, Poyatos Capilla JM, Almécija MC, Muñío MDM, Martín-Pascual J. Nutrient Removal and Membrane Performance of an Algae Membrane Photobioreactor in Urban Wastewater Regeneration. MEMBRANES 2022; 12:membranes12100982. [PMID: 36295741 PMCID: PMC9610028 DOI: 10.3390/membranes12100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor for the treatment of the effluent of an urban wastewater treatment plant, to characterise the ultrafiltration membranes, to study the effectiveness of a proposed cleaning protocol, and to analyse the performance of the photobioreactor. The photobioreactor operated under two days of hydraulic retention times feed with the effluent from the Los Vados wastewater treatment plant (WWTP) (Granada, Spain). The microalgae community in the photobioreactor grew according to the pseudo-second-order model. The effluent obtained could be reused for different uses of diverse quality with the removal of total nitrogen and phosphorus of 56.3% and 64.27%, respectively. The fouling of the polyvinylidene difluoride ultrafiltration membrane after 80 days of operation was slight, increasing the total membrane resistance by approximately 22%. Moreover, the higher temperature of the medium was, the lower intrinsic resistance of the membrane. A total of 100% recovery of the membrane was obtained in the two-phase cleaning protocol, with 42% and 58%, respectively.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | | | | | - María del Mar Muñío
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-61-55
| |
Collapse
|
5
|
Hube S, Lee S, Chong TH, Brynjólfsson S, Wu B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155248. [PMID: 35427614 DOI: 10.1016/j.scitotenv.2022.155248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; Department of Environmental Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
6
|
Evaluation of the impact of SBR operating temperature and filtration temperature on fouling of membranes used for tertiary treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|