1
|
Chang P, Zhou S, Wang T, Hua D, Liu S, Okoro OV, Shavandi A, Nie L. Eco-Friendly Carbon Nanotubes Reinforced with Sodium Alginate/Polyacrylic Acid for Enhanced Adsorption of Copper Ions: Kinetics, Isotherm, and Mechanism Adsorption Studies. Molecules 2024; 29:4518. [PMID: 39407448 PMCID: PMC11477899 DOI: 10.3390/molecules29194518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the removal efficiency of Cu2+ from wastewater using a composite hydrogel made of carbon nanotubes (CNTs), sodium alginate (SA), and polyacrylic acid (PAA) prepared by free radical polymerization. The CNTs@SA/PAA hydrogel's structure and properties were characterized using SEM, TEM, FTIR, XRD, rheology, DSC, EDS, elemental mapping analysis, and swelling. The adsorption performance for Cu2+ was tested in batch adsorption experiments, considering the pH, dosage, initial concentration, and contact time. The optimal conditions for Cu2+ removal were pH 5.0, an adsorbent dosage of 500 mg/L, and a contact time of 360 min. The adsorption followed pseudo-second order kinetics. Isotherm analyses (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips, Toth, and Khan) revealed that the Freundlich isotherm best described the adsorption, with a maximum capacity of 358.52 mg/g. A thermodynamic analysis indicated that physical adsorption was the main interaction, with the spontaneity of the process also demonstrated. This study highlights the high efficiency and environmental friendliness of CNT@SA/PAA composites for Cu2+ removal from wastewater, offering a promising approach for water treatment.
Collapse
Affiliation(s)
- Pengbo Chang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- Zhengzhou Technical College, Zhengzhou 450121, China
| | - Shuyang Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
| | - Tongchao Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Armin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Sayago UFC, Ballesteros VB, Aguilar AML. Bacterial Cellulose-Derived Sorbents for Cr (VI) Remediation: Adsorption, Elution, and Reuse. Polymers (Basel) 2024; 16:2605. [PMID: 39339069 PMCID: PMC11435167 DOI: 10.3390/polym16182605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The search for adsorbents that are non-toxic and low cost with a high adsorption capacity and excellent recyclability is a priority to determine the way to reduce the serious environmental impacts caused by the discharge of effluents loaded with heavy metals. Bacterial cellulose (BC) biomass has functional groups such as hydroxyl and carbonyl groups that play a crucial role in making this cellulose so efficient at removing contaminants present in water through cation exchange. This research aims to develop an experimental process for the adsorption, elution, and reuse of bacterial cellulose biomass in treating water contaminated with Cr (VI). SEM images and the kinetics behavior were analyzed with pseudo-first- and pseudo-second-order models together with isothermal analysis after each elution and reuse process. The adsorption behavior was in excellent agreement with the Langmuir model along with its elution and reuse; the adsorption capacity was up to 225 mg/g, adding all the elution processes. This study presents a novel approach to the preparation of biomass capable of retaining Cr (VI) with an excellent adsorption capacity and high stability. This method eliminates the need for chemical agents, which would otherwise be difficult to implement due to their costs. The viability of this approach for the field of industrial wastewater treatment is demonstrated.
Collapse
|
3
|
Reisi S, Farimaniraad H, Baghdadi M, Abdoli MA. Immobilization of polypyrrole on waste face masks using a novel in-situ-surface polymerization method: removal of Cr(VI) from electroplating wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:3162-3173. [PMID: 37161857 DOI: 10.1080/09593330.2023.2210771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
In this work, polypyrrole (PPy) was synthesized on the surface of waste surgical face masks (SFM) with a novel environmentally-friendly in-situ-surface polymerization approach and used as an adsorbent for removing hexavalent chromium (Cr(VI)). In this method, the SFM surface was activated using KMnO4, resulting in the immobilization of porous MnO2, on which pyrrole can be polymerized efficiently. The novelty of this method is the presence of the oxidant on the surface before the polymerization step, which results in a better surface modification with polypyrrole. This method provides adsorbents with higher adsorption capacity compared to the conventional polymerization method with ammonium persulfate (APS). The adsorbent prepared at the mass ratios of 1.0 and 2.0; respectively, for KMnO4/SFM and pyrrole/SFM showed the highest performance. The adsorbent characterization revealed the successful polymerization of pyrrole on the surface of SFM. Reusability of the KMnO4 and pyrrole solutions were successful with remarkable results, showing the advantage of this technique compared to the conventional polymerization method with APS. The effect of different factors on the adsorption process was investigated. The removal rate was around 98% under the optimum conditions (pH, 2; adsorbent dosage, 3 g L-1; contact time, 60 min). The equilibrium data were well fitted by Langmuir isotherm (R2 = 0.9999). Kinetic investigations revealed that the adsorption process fitted well with the pseudo-second-order model. The adsorbent was regenerated for up to five cycles. One of the most important advantages of the proposed method compared to other methods is the reduction of wastewater during the synthesis process.
Collapse
Affiliation(s)
- Saba Reisi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Hamidreza Farimaniraad
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abdoli
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Das KP, Chauhan P, Staudinger U, Satapathy BK. Sustainable adsorbent frameworks based on bio-resourced materials and biodegradable polymers in selective phosphate removal for waste-water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31691-31730. [PMID: 38649601 DOI: 10.1007/s11356-024-33253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Phosphorus to an optimum extent is an essential nutrient for all living organisms and its scarcity may cause food security, and environmental preservation issues vis-à-vis agroeconomic hurdles. Undesirably excess phosphorus intensifies the eutrophication problem in non-marine water bodies and disrupts the natural nutrient balance of the ecosystem. To overcome such dichotomy, biodegradable polymer-based adsorbents have emerged as a cost-effective and implementable approach in striking a "desired optimum-undesired excess" balance pertaining to phosphate in a sustainable manner. So far, the reports on adopting such adsorbent-approach for wastewater remediation remained largely scattered, unstructured, and poorly correlated. In this background, the contextual review comprehensively discusses the current state-of-the-art in utilizing biodegradable polymeric frameworks as an adsorbent system for phosphate removal and its efficient recovery from the aquatic ecosystem, while highlighting their characteristics-specific functional efficiency vis-à-vis easiness of synthetic and commercial viability. The overview further delves into the sources and environmental ramifications of excessive phosphorus in water bodies and associated mechanistic pathways of phosphorus removal via adsorption, precipitation, and membrane filtration enabled by biodegradable (natural and synthetic) polymeric substrates. Finally, functionality optimization, degradability tuning, and adsorption selectivity of biodegradable polymers are highlighted, while aiming to strike a balance in "removal-recovery-reuse" dynamics of phosphate. Thus, the current review not only paves the way for future exploration of biodegradable polymers in sustainable cost-effective adsorbents for phosphorus removal but also can serve as a guide for researchers dealing with this critical issue.
Collapse
Affiliation(s)
- Krishna Priyadarshini Das
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Pooja Chauhan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India
| | - Ulrike Staudinger
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas, 110016, India.
| |
Collapse
|
5
|
Zhang L, Xu M, Li L. Amino-Functionalized Lotus Stem Hydrochar for Rapid Adsorption and In Situ Detoxification of Cr(VI) from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6016-6025. [PMID: 38448398 DOI: 10.1021/acs.langmuir.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The development of low-cost, efficient, and environmentally friendly adsorbents is the key to highly toxic hexavalent chromium [Cr(VI)] removal by adsorption. In this paper, amino-functionalized lotus stem hydrochar (ALSHC) was prepared from an agricultural waste lotus stem (LS) for the adsorption removal of Cr(VI) from water. The effects of the initial Cr(VI) concentration, contact time, temperature, coexisting anions, and reusability of ALSHC on Cr(VI) removal were examined in detail. The adsorption mechanism was further discussed by investigating the impact of the solution's initial pH, the relation between the pH change in solution and Cr(VI) removal during the process, the changes of chromium (Cr) species in solution and on ALSHC during adsorption, and the XPS characterization. The results demonstrated that ALSHC effectively removed Cr(VI) from water with rapid adsorption (the removal rate reached 80.90% in only 10 min) and in situ detoxification. Most importantly, ALSHC still had better adsorption performance (adsorption capacity of 30.95 mg g-1) than commercially activated carbon, even at pH = 9.00. The adsorption of Cr(VI) by ALSHC accorded with the pseudo-second-order kinetic model and Langmuir isotherm model, indicating a monolayer chemisorption process. The adsorption process was shown to be spontaneous and endothermic based on the thermodynamic characteristics (ΔG0 < 0, ΔH0 > 0, and ΔS0 > 0). The mechanism of Cr(VI) removal was mainly composed of three parts in sequence: Firstly, Cr(VI) in solution was quickly adsorbed onto ALSHC with protonated -NH2 through electrostatic attraction; subsequently, the adsorbed Cr(VI) on ALSHC was mostly detoxicated by in situ reduction; and finally, the reduced Cr(III) and the remaining Cr(VI) were fixed on the ALSHC surface by complexation. The prepared ALSHC displayed a certain superiority in Cr(VI) adsorption and had the prospect of further development.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Min Xu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Lingzhen Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
6
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
7
|
Wu X, Wang J, Lei Y, He H, Lei Z, Huang X, Xiao H, Wu G, Zeng Z, Wang Y, Huang L, Shen F, Deng S, Gao X, Fang Z, Fang D. Restricted reaction of layered double hydroxide nanoparticles with phosphate in a confined microsphere space. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169720. [PMID: 38171457 DOI: 10.1016/j.scitotenv.2023.169720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Over the past decades, considerable efforts have been made to find useful solutions for phosphate pollution control. The state transition of nanomaterials from freely dispersed to encapsulated provides a realizable route for their application in phosphate elimination. The separation convenience offered by encapsulation has been widely recognized, however, the unique binding mode of nanostructures and phosphate in the confined space remains unclear, limiting its further development. Here, carboxymethyl cellulose (CMC) microspheres were used as hosts to deploy layered double hydroxide (LDH) nanoparticles. On this basis, we described an attempt to explore the adsorption behavior of LDH and phosphate in the microsphere space. Compared to their freely dispersed analogues, LDH particles exhibited higher structural stability, wider pH adaptability, and better phosphate selectivity when spatially confined in the CMC microsphere. Nevertheless, the kinetic process was severely inhibited by three orders of magnitude. Besides, the saturated phosphate adsorption capacity was also reduced to 74.6 % of the freely dispersed system. A combinative characterization revealed that the highly electronegative CMC host not only causes electrostatic repulsion to phosphate, but also extracts the electron density of the metal center of LDH, weakening its ability to act as a Lewis acid site for phosphate binding. Meanwhile, the microsphere encapsulation also hinders the ion exchange function of interlayer anions and phosphate. This study offers an objective insight into the reaction of LDH and phosphate in the confined microsphere space, which may contribute to the advanced design of encapsulation strategies for nanoparticles.
Collapse
Affiliation(s)
- Xingyu Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyi Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuantong Lei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoyang He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhibo Lei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinjuan Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Ganxue Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenxing Zeng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjun Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Huang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Sichuan Agricultural University, Chengdu 611130, China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Provincial Engineering Center of Agricultural Environmental Pollution Control, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Gao
- Fuzhou Planning and Design Research Institute Group Co., LTD, Fuzhou 350100, China.
| | - Zhuoyao Fang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dexin Fang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Rahaman MH, Islam MR, Islam R, Alam SMN, Rahman MS, Rahman MA, Begum BA. Preparation, characterization, and adsorption kinetics of graphene oxide/chitosan/carboxymethyl cellulose composites for the removal of environmentally relevant toxic metals. Int J Biol Macromol 2024; 257:128357. [PMID: 38035970 DOI: 10.1016/j.ijbiomac.2023.128357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
This study attempted to develop a low-cost and eco-friendly bio-based composite adsorbent that is highly efficient in capturing potential toxic metals. The bio-composite adsorbent was prepared using graphene oxide (GO), carboxymethyl cellulose (CMC) and chitosan (CS); and characterized using FTIR, SEM-EDX and WAXD techniques. Metal-ion concentration in an aqueous solution was measured by ICP-OES. This article reveals that the adsorption of heavy metal ions varied according to the adsorbent quantity, initial metal concentration, pH, and interaction time. The metal ions' adsorption capacity (mg/g) was observed to increase when the interaction time and metal concentration increased. Conversely, metal ions adsorption was decreased with an increase in adsorbent dosages. The effect of pH on metal ions' adsorption was ion-specific. The substantial adsorption by GO/CMC/CS composite for Co2+, CrO42-, Mn2+ and Cd2+, had the respective values of 43.55, 77.70, 57.78, and 91.38 mg/g under acidic conditions. The metal ions experimental data were best fitted with pseudo-second-order (PSO) kinetics, and Freundlich isotherm model (except Co2+). The separation factors (RL) value in the present investigation were found between 0 and 1, meaning that the metal ions adsorption onto GO/CS/CMC composite is favorable. The RL and sorption intensity (1/n) values fitted well to the adsorption isotherm.
Collapse
Affiliation(s)
- Md Hafezur Rahaman
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Md Rakibul Islam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Rafiquel Islam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Nur Alam
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Safiur Rahman
- Atomic Energy Centre (AECD) Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Aminur Rahman
- Department of Public Health Engineering, Zonal Laboratory, Khulna 9100, Bangladesh
| | - Bilkis A Begum
- Atomic Energy Centre (AECD) Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| |
Collapse
|
9
|
Udoetok IA, Karoyo AH, Mohamed MH, Wilson LD. Chitosan Biocomposites with Variable Cross-Linking and Copper-Doping for Enhanced Phosphate Removal. Molecules 2024; 29:445. [PMID: 38257359 PMCID: PMC10820908 DOI: 10.3390/molecules29020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The fabrication of chitosan (CH) biocomposite beads with variable copper (Cu2+) ion doping was achieved with a glutaraldehyde cross-linker (CL) through three distinct methods: (1) formation of CH beads was followed by imbibition of Cu(II) ions (CH-b-Cu) without CL; (2) cross-linking of the CH beads, followed by imbibition of Cu(II) ions (CH-b-CL-Cu); and (3) cross-linking of pristine CH, followed by bead formation with Cu(II) imbibing onto the beads (CH-CL-b-Cu). The biocomposites (CH-b-Cu, CH-b-CL-Cu, and CH-CL-b-Cu) were characterized via spectroscopy (FTIR, 13C solid NMR, XPS), SEM, TGA, equilibrium solvent swelling methods, and phosphate adsorption isotherms. The results reveal variable cross-linking and Cu(II) doping of the CH beads, in accordance with the step-wise design strategy. CH-CL-b-Cu exhibited the greatest pillaring of chitosan fibrils with greater cross-linking, along with low Cu(II) loading, reduced solvent swelling, and attenuated uptake of phosphate dianions. Equilibrium and kinetic uptake results at pH 8.5 and 295 K reveal that the non-CL Cu-imbibed beads (CH-b-Cu) display the highest affinity for phosphate (Qm = 133 ± 45 mg/g), in agreement with the highest loading of Cu(II) and enhanced water swelling. Regeneration studies demonstrated the sustainability and cost-effectiveness of Cu-imbibed chitosan beads for controlled phosphate removal, whilst maintaining over 80% regenerability across several adsorption-desorption cycles. This study offers a facile synthetic approach for controlled Cu2+ ion doping onto chitosan-based beads, enabling tailored phosphate oxyanion uptake from aqueous media by employing a sustainable polysaccharide biocomposite adsorbent for water remediation by mitigation of eutrophication.
Collapse
Affiliation(s)
| | | | | | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada (A.H.K.)
| |
Collapse
|
10
|
Wang S, Wang Y, Dong S, Li X, Liu C. Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal. ENVIRONMENTAL RESEARCH 2023; 236:116730. [PMID: 37500045 DOI: 10.1016/j.envres.2023.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Phosphorus (P) removal from wastewater is critical for ecosystem operation and resource recovery. To facilitate the recycling of the used absorbents through balancing their adsorption and desorption performance on P, in this work, a novel porous magnetic La(OH)3-loaded MAPTAC/chitosan (CTS)/polyethyleneimine (PEI) ternary composite hydrogel (p-MTCH-La(OH)3) with enhanced bifunctional adsorption sites was synthesized by simultaneous dissolution of pre-embedded CaCO3 and CTS powder, followed by grafting PEI and loading La. Hierarchical porous channels promoted good dispersion of La(OH)3, bringing an excellent P adsorption capacity of 107.23 ± 4.96 mg P/g at neutral condition. PEI grafted with CTS increased the surface charge and enhanced the electrostatic attraction, which facilitated the desorption of P. The porous structure and abundant active sites also facilitated rapid adsorption with an adsorption rate constant of 0.1 g mg-1 h-1. p-MTCH-La(OH)3 maintained effective P adsorption despite co-existence with competing substances and after 5 cycles. Further mechanistic analysis indicated that La-P inner sphere complexation and LaPO4 crystalline transformation were the main pathways for P removal. However, electrostatic interactions contributed 17.5%-46.7% of the adsorption amount during the first 30 min of rapid adsorption, enabling 92.8% of the adsorbed P at this stage to be desorbed by alkaline solution. Based on the variations of adsorption and desorption capacity with adsorption time, a rapid unsaturated adsorption of 1-2 h was proposed to facilitate the recycling of the adsorbent. This study proposed a method to promote P adsorption and desorption by enhancing bifunctional adsorption sites, and proved that p-MTCH-La(OH)3 is a promising phosphate adsorbent.
Collapse
Affiliation(s)
- Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
11
|
Wang Y, Zhang Y, Liu X, Sun S, Qin S, Huang J, Chen B. Efficient separation of uranium(VI) from aqueous solution using magnetic Co/Al layered double oxides coated with carbon dots. Dalton Trans 2023; 52:12296-12307. [PMID: 37585192 DOI: 10.1039/d3dt01853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Herein, magnetic layered double oxides coated with carbon dots (MLCs) were synthesized through introducing sodium dodecylbenzene sulfonate and FeCl2 into Co/Al LDH for capturing uranium from aqueous solution. When the molar ratio of Co to Al was 4 : 1, the MLC composite possessed the strongest affinity to uranium(VI) in solution with short equilibrium time (<160 min), high adsorption efficiency (94.31%) and large removal capacity (513.85 mg g-1). The adsorption behavior of MLCs for uranium(VI) was well fitted with Langmuir and pseudo-second-order models, suggesting that the monolayer chemical adsorption was the rate-limiting step. Besides, MLC-3 could be reused by using 0.15 mol L-1 ethylene diamine tetraacetic acid as an eluent and the removal percentage still remained at a high level (>83.3%) after 5 adsorption/desorption cycles. Redox reaction, chemical complexation and electrostatic attraction were proved to play significant roles in uranium(VI) separation. Therefore, MLC-3 could be used as a potential adsorbent in uranium(VI)-containing wastewater treatment due to its excellent adsorption performance for uranium(VI).
Collapse
Affiliation(s)
- Yan Wang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xiaolin Liu
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Sen Sun
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Shiyi Qin
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Jiaqi Huang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| | - Bowei Chen
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, PR China.
| |
Collapse
|
12
|
Zong E, Shen Y, Yang J, Liu X, Song P. Preparation and Characterization of an Invasive Plant-Derived Biochar-Supported Nano-Sized Lanthanum Composite and Its Application in Phosphate Capture from Aqueous Media. ACS OMEGA 2023; 8:14177-14189. [PMID: 37091370 PMCID: PMC10116626 DOI: 10.1021/acsomega.3c00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Invasive plants pose a great threat to natural ecosystems owing to their rapid propagation and spreading ability in nature. Herein, a typical invasive plant, Solidago canadensis, was chosen as a novel feedstock for the preparation of nano-sized lanthanum-loaded S. canadensis-derived biochar (SCBC-La), and its adsorption performance for phosphate removal was evaluated by batch adsorption experiment. The composite was characterized by multiple techniques. Effects of parameters, such as the initial concentration of phosphate, time, pH, coexisting ions, and ionic strength, were studied on the phosphate removal. Adsorption kinetics and isotherms showed that SCBC-La shows a faster adsorption rate at a low concentration and SCBC-La exhibits good La utilization efficiency than some of the reported La-modified adsorbents. Phosphate can be effectively removed over a relatively wide pH of 3-9 because of the high pH pzc of SCBC-La. Furthermore, the SCBC-La shows a strong anti-interference capability in terms of pH value, coexisting ions, and ionic strength, exhibiting a highly selective capacity for phosphate removal. Additionally, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements reveal that hydroxyl groups on the surface of SCBC-La were replaced by phosphate and manifest the reversible transformation between La(OH)3 and LaPO4. Considering its high adsorption capacity and excellent selectivity, SCBC-La is a promising material for preventing eutrophication. This work gives a new method of pollution control with waste treatment since the invasive plant (S. canadensis) is converted into biochar-based nanocomposite for effective removal of phosphate to mitigate eutrophication.
Collapse
Affiliation(s)
- Enmin Zong
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210093, P. R. China
| | - Yuanyuan Shen
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
| | - Jiayao Yang
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Xiaohuan Liu
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
- ,
| | - Pingan Song
- Centre
for Future Materials, University of Southern
Queensland, Springfield 4350, Australia
| |
Collapse
|
13
|
Fu J, Yap JX, Leo CP, Chang CK. Carboxymethyl cellulose/sodium alginate beads incorporated with calcium carbonate nanoparticles and bentonite for phosphate recovery. Int J Biol Macromol 2023; 234:123642. [PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
Collapse
Affiliation(s)
- Jialin Fu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Jia Xin Yap
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia.
| | - Chun Kiat Chang
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300 Penang, Malaysia
| |
Collapse
|
14
|
Ghiorghita CA, Dinu MV, Lazar MM, Dragan ES. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238574. [PMID: 36500664 PMCID: PMC9736407 DOI: 10.3390/molecules27238574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications.
Collapse
|
15
|
Catalytic ozonation performance of calcium-loaded catalyst (Ca-C/Al2O3) for effective treatment of high salt organic wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Xu W, Liu X, Tang K. Adsorption of hydroquinone and Pb(II) from water by β-cyclodextrin/polyethyleneimine bi-functional polymer. Carbohydr Polym 2022; 294:119806. [PMID: 35868766 DOI: 10.1016/j.carbpol.2022.119806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
A novel bi-functional β-cyclodextrin polymer (CD@TCT@PEI) was synthesized for the removal of hydroquinone and Pb(II) from wastewater. The structure and adsorption performance of CD@TCT@PEI towards hydroquinone and Pb(II) were studied comprehensively. Both of the adsorption processes fit the pseudo-second-order kinetic model well. The adsorption isotherms of hydroquinone and Pb(II) could be described well by Langmuir isotherm model, and the maximum adsorption capacities of hydroquinone and Pb(II) are 364.86 and 113.52 mg g-1, respectively. The adsorption of hydroquinone and Pb(II) on CD@TCT@PEI is an exothermic and spontaneous process. The adsorbed CD@TCT@PEI could be regenerated easily, and can still maintain high adsorption performance after 5 cycles. The electrostatic interaction and coordination interaction account for the adsorption of Pb(II), and inclusion of cyclodextrin and hydrogen-bond interaction are responsible for hydroquinone adsorption. This study provides some insights to design an adsorbent that can simultaneously remove heavy metal ions and organic micropollutants from wastewater.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| |
Collapse
|
17
|
Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Yang C, Yang HR, Li SS, An QD, Zhai SR, Xiao ZY. Rationally designed carboxymethylcellulose-based sorbents crosslinked by targeted ions for static and dynamic capture of heavy metals: Easy recovery and affinity mechanism. J Colloid Interface Sci 2022; 625:651-663. [PMID: 35764045 DOI: 10.1016/j.jcis.2022.06.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
A separable spherical bio-adsorbent (CMC-Cr) was prepared for capturing heavy metal ions by simple coordination and cross-linking between targeted ions of Cr3+ and carboxymethyl cellulose (CMC). A simple alternation of the CMC incorporation allowed the interconnected networks within the microspheres of preformed solid CMC to be adjusted. The excellent network structure could achieve the maximum collision between the adsorbent and the heavy metal cations in the wastewater. Through investigations, CMC-Cr-2 beads were determined as the optimal adsorbent. The adsorption performance of novel materials was evaluated by examining their adsorption behavior on Pb(II) and Co(II) under both static and dynamic conditions. The results showed that the adsorption behavior of CMC-Cr-2 beads on both two heavy metal cations could be fully reflected by the Freundlich model. Under the theoretical conditions, the maximum adsorption capacities were 97.26 and 144.74 mg/g. The kinetic results for the adsorption of two heavy metal cations on CMC-Cr-2 beads were consistent with the Pseudo-second-order kinetic model. Moreover, the correlation coefficient of the Thomas model was significant in the dynamic adsorption performance tests. Five regeneration cycle studies were successfully carried out on CMC-Cr-2 beads to evaluate reusability and stability. The applicability of CMC-Cr-2 beads in authentic aqueous solutions (both the single and binary pollutant systems) was also studied, and the results indicated that CMC-Cr-2 beads had a high potential for practical implementation. Furthermore, by analyzing the surface interactions of two heavy metal cations with the CMC-Cr-2 beads based on FTIR and XPS characterization, a basic understanding of the interaction between bio-sorbents and pollutants in wastewater can be obtained.
Collapse
Affiliation(s)
- Chen Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hua-Rong Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Shan-Shan Li
- Jinxi Research Institute of Chemical Industry Company Limited, Huludao 125000, China
| | - Qing-Da An
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shang-Ru Zhai
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Zuo-Yi Xiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Yang HR, Yang C, Li SS, Shan XC, Song GL, An QD, Zhai SR, Xiao ZY. Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|