1
|
Ma B, Li J, Yang C, Wang D. Comparative study of electro-Fenton and photoelectro-Fenton processes using a novel photocatalytic fuel cell electro-Fenton system with g-C 3 N 4 @N-TiO 2 and Ag/CNT@CF as electrodes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10946. [PMID: 38238981 DOI: 10.1002/wer.10946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/27/2023] [Indexed: 01/23/2024]
Abstract
In this study, a novel photocatalytic fuel cell electro-Fenton (PFC-EF) system was constructed using g-C3 N4 @N-TNA and Ag/CNT@CF as electrodes. The composition, structure, and morphology of the electrodes were obtained. The g-C3 N4 @N-TNA, with its 2.37 eV band gap and 100 mV photovoltage, has excellent excitation properties for sunlight. Ag/CNT@CF with abundant pores, CNT 3D nanostructures, and Ag crystals on the surface can improve the electro-Fenton efficiency. A comparative study of rhodamine B (RhB) degradation was performed in this system. It has been shown that electric fields can greatly enhance the oxidation efficiency of both anode photocatalysis and the cathode electro-Fenton process. Under optimal conditions, RhB can be completely removed by the photoelectro-Fenton (PEF) process. The energy consumption of the PEF system was obtained. The electrical energy per order (EE/O) is only 9.2 kWh/m3 ·order, which is only 16.5% of EF and 2.2% of PFC-EF system. The mineralization current efficiency (MCE) of the PEF system reached 93.3% for a 2-h reaction. Therefore, the PEF system has the advantage of saving energy. The kinetic analysis shows that the RhB removal follows a first-order kinetic law, and the reaction rate constant reaches 0.1304 min-1 , which is approximately 5.2 times larger and 4.0 times larger than the electro-Fenton and PFC-EF processes, respectively. RhB removal is a coupling multimechanism in which an electric field enhances photoelectron migration, Ag loading improves H2 O2 generation, UV light coupled with H2 O2 promotes hydroxyl radical (٠OH) generation, and the nanoconfinement effect of CNTs promotes ٠OH accumulation in favor of RhB degradation. PRACTITIONER POINTS: Novel efficiency photocatalytic fuel cell electro-Fenton system was constructed. The electric field greatly enhances the photocatalytic fuel cell electro-Fenton system. Multiple coupling mechanisms of UV/H2O2, UV/Fenton and photo-electro-Fenton have been revealed.
Collapse
Affiliation(s)
- Boya Ma
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, College of Engineering, Jilin Normal University, Siping, China
| | - Jinying Li
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, College of Engineering, Jilin Normal University, Siping, China
- Ministry of Education, Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Changchun, China
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, College of Engineering, Jilin Normal University, Siping, China
- Ministry of Education, Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Changchun, China
| | - Dong Wang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Guo W, Guo T, Zhang Y, Yin L, Dai Y. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review. CHEMOSPHERE 2023; 339:139486. [PMID: 37499803 DOI: 10.1016/j.chemosphere.2023.139486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In the current era of severe energy and environmental crises, the need for efficient and sustainable methods to control pollution and promote resource recycling has become increasingly important. Photocatalytic degradation of pollutants and simultaneous production of clean energy is one such approach that has garnered significant attention in recent years. The principle of photocatalysis involves the development of efficient photocatalysts and the efficient utilization of solar energy. The use of organic contaminants can enhance the photocatalytic reactions, leading to the sustainable generation of clean energy. Herein, we provide a comprehensive review of the latest advances in the application of photocatalytic synergized clean energy production in the environmental field. This review highlights the latest developments and achievements in this field, highlighting the potential for this approach to revolutionize the way we approach environmental pollution control and resource recycling. The review focuses on (1) the mechanism of photocatalytic degradation and synergistic energy production, (2) photocatalysts and synthesis strategies, (3) photocatalytic carbon dioxide reduction, (4) pollutant degradation, and (5) hydrogen and electricity production. In addition, perspectives on key challenges and opportunities in photocatalysis and clean energy for future developments are proposed. This review provides a roadmap for future research directions and innovations of photocatalysis that could contribute to the development of more sustainable and cleaner energy solutions.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Tao Guo
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yuanzheng Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Yunrong Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
3
|
Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL. Disclosing the mutual influence of photocatalytic fuel cell and photoelectro-Fenton process in the fabrication of a sustainable hybrid system for efficient Amaranth dye removal and simultaneous electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34363-34377. [PMID: 36512276 DOI: 10.1007/s11356-022-24647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
Collapse
Affiliation(s)
- Shen-Hui Thor
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Che Zulzikrami Azner Abidin
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Cheng-Yong Heah
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
4
|
Shokri A, Nasernejad B, Sanavi Fard M. Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment. WATER, AIR, AND SOIL POLLUTION 2023; 234:153. [PMID: 36844633 PMCID: PMC9942065 DOI: 10.1007/s11270-023-06139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023]
Abstract
The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H2O2 activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. Graphical Abstract
Collapse
Affiliation(s)
- Aref Shokri
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
- Jundi-Shapur Research Institute, Jundishapur University of Technology, Dezful, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
5
|
Zhang Q, Qileng A, Li J, Cao Y, Liu W, Liu Y. Grafting a Porous Metal-Organic Framework [NH 2-MIL-101(Fe)] with AgCl Nanoparticles for the Efficient Removal of Congo Red. ACS OMEGA 2023; 8:4639-4648. [PMID: 36777579 PMCID: PMC9909803 DOI: 10.1021/acsomega.2c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Organic dyes can produce harmful effects on the water environment, such as affecting the growth of aquatic organisms, reducing the transparency of water bodies, and causing eutrophication of water bodies, so it is necessary to mitigate the hazards of organic dyes. In this study, a metal-organic framework [NH2-MIL-101(Fe)] was synthesized by the solvothermal method as a carrier for the in situ uniform deposition of AgCl nanoparticles on its surface, which was successfully used for both adsorption and degradation of Congo red. Adsorption results showed that the adsorption kinetics conformed to the proposed secondary adsorption kinetics equation with a maximum adsorption capacity of 248.4 mg·g-1. Furthermore, the degradation results indicated that with the aid of sodium borohydride as a reducing agent, the degradation of Congo red followed pseudo-first-order kinetics with a degradation rate of 0.077 min-1, and the complete degradation of Congo red was finished within 18 min. Therefore, AgCl/NH2-MIL-101(Fe) may find a potential application in the removal of dyes from wastewater.
Collapse
Affiliation(s)
- Qiyue Zhang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
| | - Aori Qileng
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
| | - Jiale Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
| | - Yiran Cao
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
| | - Weipeng Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
| | - Yingju Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou510642, China
- Guangdong
Provincial Key Laboratory of Agricultural & Rural Pollution Abatement
and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou510642, China
| |
Collapse
|
6
|
Ong YP, Ho LN, Ong SA, Ibrahim AH, Banjuraizah J, Thor SH, Lee SL, Teoh TP. UVA-irradiated dual photoanodes and dual cathodes photocatalytic fuel cell: mechanisms and Reactive Red 120 degradation pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81368-81382. [PMID: 35729394 DOI: 10.1007/s11356-022-21413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
To enhance dye removal and energy recovery efficiencies in single-pair electrode photocatalytic fuel cell (PFC-AC), dual cathodes PFC (PFC-ACC) and dual photoanodes PFC (PFC-AAC) were established. Results revealed that PFC-AAC yielded the highest decolorization rate (1.44 h-1) due to the promotion of active species such as superoxide radical (•O2-) and hydroxyl radical (•OH) when the number of photoanode was doubled. The results from scavenging test and UV-Vis spectrophotometry disclosed that •OH was the primary active species in dye degradation of PFC. Additionally, PFC-AAC also exhibited the highest power output (17.99 μW) but the experimental power output was much lower than the theoretical power output (28.24 μW) due to the strong competition of electron donors of doubled photoanodes to electron acceptors at the single cathode and its high internal resistance. Besides, it was found that the increments of dye volume and initial dye concentration decreased the decolorization rate but increased the power output due to the higher amount of sacrificial agents presented in PFC. Based on the abovementioned findings and the respective dye intermediate products identified from gas chromatography-mass spectrometry (GC-MS), the possible degradation pathway of RR120 was scrutinized and proposed.
Collapse
Affiliation(s)
- Yong-Por Ong
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Abdul Haqi Ibrahim
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Johar Banjuraizah
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Shen-Hui Thor
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sin-Li Lee
- School of Applied Sciences, Faculty of Integrated Life Sciences, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Tean-Peng Teoh
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
7
|
Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Ong YP, Yap KL. A sustainable photocatalytic fuel cell integrated photo-electro-Fenton hybrid system using KOH activated carbon felt cathodes for enhanced Amaranth degradation and electricity generation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|