1
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
2
|
Hesaraki SAH, Prymak O, Heidelmann M, Ulbricht M, Fischer L. Integrated In Situ Fabrication of CuO Nanorod-Decorated Polymer Membranes for the Catalytic Flow-Through Reduction of p-Nitrophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17517-17530. [PMID: 38536956 DOI: 10.1021/acsami.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We developed a novel method to fabricate copper nanorods in situ in a poly(ether sulfone) (15 wt %) casting solution by a sonochemical reduction of Cu2+ ions with NaBH4. The main twist is the addition of ethanol to remove excess NaBH4 through Cu(0) catalyzed ethanolysis. This enabled the direct use of the resulting copper-containing casting dispersions for membrane preparation by liquid nonsolvent-induced phase separation and led to full utilization of the copper source, generating zero metal waste. We characterized the copper nanorods as presented in the membranes via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV/vis spectroscopy. We could demonstrate that the rapid immobilization from reducing conditions led to the membrane incorporation of copper nanorods in a state of high reactivity, which also promoted the complete oxidation to CuO after fabrication. We further observed a large aspect ratio and crystal straining of the nanorods, likely resulting from growth around the matrix polymer. The entanglement with poly(ether sulfone) further facilitated a selective presentation at the pore surface of the final CuO-decorated membranes. The membranes also exhibit high water permeances of up to 2800 L/m2hbar. Our catalytic membranes achieved exceptionally high activities in the aqueous flow-through reduction of p-nitrophenol (p-NP), with turnover frequencies of up to 115 h-1, even surpassing those of other state-of-the-art catalytic membranes that incorporate Pd or Ag. Additionally, we demonstrated that catalytic hydrolysis of the reducing agent in water can lead to hydrogen gas formation and blocking of active sites during continuous catalytic p-NP hydrogenation. We illustrated that the accompanying conversion loss can be mitigated by facilitated gas transport in the water-filled pores, which is dependent on the orientation of the pore size gradient and the flow direction.
Collapse
Affiliation(s)
- S Amir H Hesaraki
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Str. 199, 47057 Duisburg, Germany
| |
Collapse
|
3
|
Liu Z, Nie L, Pei X, Zhang L, Long S, Li Y, Jiao H, Gong W. Seafood waste derived Pt/Chitin nanocatalyst for efficient hydrogenation of nitroaromatic compounds. Int J Biol Macromol 2024; 264:130598. [PMID: 38447839 DOI: 10.1016/j.ijbiomac.2024.130598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The fabrication of reliable, reusable and efficient catalyst is crucial for the conversion of nitroaromatic compounds into more chemically valuable amine-based molecules. In this study, a series of chitin supported platinum (Pt) catalysts with high catalytic activity, stability, and reusability were developed by using chitin derived from seafood waste as raw materials. The catalytic performance differences among these catalysts activated by different methods were investigated by hydrogenation of nitroaromatic compounds. The results showed that the multilayer hierarchical pore structure and abundance of hydroxyl and acetamido groups in chitin provided ample anchoring sites for Pt nanoparticles (NPs), ensuring the high dispersion of Pt NPs. Moreover, the interconnected channels between chitin nanofibrous microspheres facilitated rapid transport of reaction substrates. The best Pt/Chitin catalyst exhibited excellent catalytic activity and broad substrate applicability in hydrogenation of nitroaromatic compounds. Significantly, even after 20 runs, no discernible deactivation of activity was observed, demonstrating exceptional catalytic reusability. The application of seafood waste-based catalysts is conducive to the development of a green/sustainable society.
Collapse
Affiliation(s)
- Zhuoyue Liu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Ling Nie
- School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China.
| | - Lingyu Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huibin Jiao
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
4
|
Chen J, Gao Y, Zuo S, Mao H, Li X, Liu W, Yao C, Gui H. Monolithic Catalysts Supported by Emulsion-Templated Porous Polydivinylbenzene for Continuous Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38295287 DOI: 10.1021/acs.langmuir.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A monolithic catalyst was fabricated through an emulsion-templating method, postpolymerization modification, and in situ loading of active constituents. To achieve a high specific surface area, divinylbenzene (DVB) was solely employed as the monomer, while the porous structure was adjusted with the porogen content and the types of initiators. Then, anchor points were introduced on the pore wall through nitration and amination of the polymeric scaffold. Using a controlled "silver mirror reaction", monolithic catalysts were obtained after loading of silver nanoparticles (Ag NPs), which was verified from morphological and crystallinity characteristics. The catalytic performance of the resultant monolithic catalyst was determined with the model reduction of 4-nitrophenol (4-NP). In static catalysis, the monolithic catalyst was proved to have a reactively high apparent rate constant and a good reusability. Furthermore, a flow reactor was fabricated with the monolithic catalyst, showing a high efficiency and long-term durability for the continuous reduction of 4-NP. This work broadened the adjustment of porous structures and the subsequent application for emulsion-templated monoliths.
Collapse
Affiliation(s)
- Jieyi Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Textiles, Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huihui Mao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Haoguan Gui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Liang N, Hu X, Zhang X, Li W, Guo Z, Huang X, Li Z, Zhang R, Shen T, Zou X, Shi J. Ratiometric Sensing for Ultratrace Tetracycline Using Electrochemically Active Metal-Organic Frameworks as Response Signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7584-7592. [PMID: 37139942 DOI: 10.1021/acs.jafc.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A novel ratiometric sensor using an electrochemically active metal-organic framework of Mo@MOF-808 and NH2-UiO-66 as response signals was developed to detect tetracycline (TET) in ultratrace quantities. To achieve the dual-response strategy, Mo@MOF-808, with a reduction peak at -1.06 V, and NH2-UiO-66, with an oxidation peak at 0.724 V, were used as signal probes directly. Concretely, Mo@MOF-808, single-stranded DNA (ssDNA), and complex system (Apt@NH2-UiO-66) of aptamer (Apt) and NH2-UiO-66 were sequentially immobilized on the electrode. With the addition of TET, Apt was hybridized with TET and Apt@NH2-UiO-66 was detached from the electrode, resulting in an increase in the current at -1.06 V and a decrease in the current at 0.724 V. Through this strategy, the sensor achieved a wide linear range (0.1-10000 nM) and a low limit of detection (0.009792 nM) for TET. Moreover, the ratiometric sensor exhibited better sensitivity, reproducibility, and stability than a single-signal sensor. Furthermore, the constructed sensor was successfully applied to detect TET in milk samples, suggesting excellent application prospects.
Collapse
Affiliation(s)
- Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Roujia Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Instrumental Analysis Center, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
- China Light Industry Engineering Technology Research Center of Central Kitchen Intelligent Equipment, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
6
|
Qu Z, Zhou M, Zhang J, Jiang H, Chen R. ZIF-derived Co@carbon nanofibers for enhanced chemical fixation of CO2. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Shaban SM, Hamed EH, Elsharif AM, Elged AH, El Basiony N. Preparation gemini non-ionic surfactants-based polyethylene oxide with variable hydrophobic tails for controlling the catalytic and antimicrobial activity of AgNPs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Guo H, Yang H, Huang J, Tong J, Liu X, Wang Y, Qiao W, Han J. Theoretical and experimental insight into plasma-catalytic degradation of aqueous p-nitrophenol with graphene-ZnO nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Jiang H, Wang S, Chen Q, Du Y, Chen R. ZIF-Derived Co/Zn Bimetallic Catalytic Membrane with Abundant CNTs for Highly Efficient Reduction of p-Nitrophenol. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Shuangqiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Qingqing Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yan Du
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| |
Collapse
|
10
|
Lin Z, Liu Y, Zhang Z, Yao J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-liquid Membrane Contactor for CO2/CH4 Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|