1
|
Zubair YO, Fuchida S, Oyama K, Tokoro C. Morphologically controlled synthesis of MgFe-LDH using MgO and succinic acid for enhanced arsenic adsorption: Kinetics, equilibrium, and mechanism studies. J Environ Sci (China) 2025; 148:637-649. [PMID: 39095196 DOI: 10.1016/j.jes.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 08/04/2024]
Abstract
In this study, we investigated improving the performance of a layered double hydroxide (LDH) for the adsorption of As(III) and As(V) by controlling the morphology of LDH crystals. The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid (SA) as a morphological control agent. Doping the LDH crystals with carboxylate ions (RCOO-) derived from SA caused the crystals to develop in a radial direction. This changed the pore characteristics and increased the density of active surface sites. Subsequently, SA/MgFe-LDH showed excellent affinity for As(III) and As(V) with maximum sorption densities of 2.42 and 1.60 mmol/g, respectively. By comparison, the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III) and As(V), respectively. The LDH was effective over a wide pH range for As(III) adsorption (pH 3-8.5) and As(V) adsorption (pH 3-6.5). Using a combination of spectroscopy and sorption modeling calculations, the main sorption mechanism of As(III) and As(V) on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchange with hydroxyl group (-OH) and RCOO-. Specifically, bidentate As-Fe complexes were proposed for both As(III) and As(V) uptake, with the magnitude of formation varying with the initial As concentration. Importantly, the As-laden adsorbent had satisfactory stability in simulated real landfill leachate. These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.
Collapse
Affiliation(s)
- Yusuf Olalekan Zubair
- Graduate school of Creative Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo, 169-8555, Japan
| | - Shigeshi Fuchida
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4‑5‑7 Konan, Minato‑Ku, Tokyo 108‑8477, Japan
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Faculty of Engineering, The University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑Ku, Tokyo 113‑8656, Japan.
| |
Collapse
|
2
|
Zhou L, Zhang H, Jin J, Xu L, Ouyang J, Ao X, Adesina AA. Honeycomb-like macroporous crosslinked chitosan assisted EDTA-intercalated Ca-Mg-Al layered hydrotalcite composite foams for efficient U(VI) biosorption. Int J Biol Macromol 2024; 279:135011. [PMID: 39182893 DOI: 10.1016/j.ijbiomac.2024.135011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The biosorption is considered to be highly efficient for the separation of radionuclide from radioactive wastewater. Herein, the crosslinked chitosan assisted EDTA intercalated Ca-Mg-Al layered double hydroxides composite foam (CS-EDTA-LDH) was synthesized by combining EDTA intercalation and freeze-drying methods. The macroporous and ultralight properties of CS-EDTA-LDH facilitates its rapid adsorption and facile recovery, and the inorganic/organic incorporation can avoid pore collapse and provide numerous adsorption sites, while the EDTA intercalation can enhance the complex capture of U(VI). The CS-EDTA-LDH presents various functional groups (carboxyl, hydroxyl and amino groups) for U(VI) adsorption, and the adsorption capacity for U(VI) reached 272.3 mg/g at pH 5.0 and 298 K. The adsorption kinetics of U(VI) conformed to PSO equation, whereas the isotherms conformed to the Freundlich model, indicating heterogeneous adsorption with diffusion process as a rate-controlling step. The thermodynamic parameters indicate that U(VI) adsorption by CS-EDTA-LDH is endothermic and spontaneous in nature. The adsorption mechanism is related to the synergic complexation by multi-functional groups, ion exchange, and possible isomeric substitution. Overall, CS-EDTA-LDH could be a promising biosorbent for the cleanup of radioactive pollution due to its high performance for U(VI) adsorption and facile recovery.
Collapse
Affiliation(s)
- Limin Zhou
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, 330013 Nanchang, China; State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Hui Zhang
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Jieyun Jin
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Li Xu
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China.
| | - Jinbo Ouyang
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | - Xianqian Ao
- State Key Laboratory for Nuclear Resources and Environment, East China University of Technology, 418 Guanglan Road, 330013 Nanchang, China
| | | |
Collapse
|
3
|
Chen D, Li R, Nan F, Li H, Huang P, Zhan W. Co-adsorption mechanisms of As(V) and Cd(II) by three-dimensional flower-like Mg/Al/Fe-CLDH synthesized by "memory effect". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103044-103061. [PMID: 37676456 DOI: 10.1007/s11356-023-29673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Due to the different physical and chemical properties such as surface charge and ion morphology between As(V) and Cd(II), it is challenging to remove As(V) and Cd(II), especially at low concentrations. This study constructed a novel three-dimension nanocomposite adsorbent Mg/Al/Fe-CLDH (CFMA) by "hydrothermal + calcination method". And different initial concentration ratios (Cd: As=1: 2, 1: 1, 2: 1) were used to investigate the removal performance of CFMA for Cd(II) and As(V). When the concentration ratio Cd: As=1: 2, the residual concentrations of As(V) and Cd(II) were 8.7 μg/L and 4.2 μg/L, respectively, which met the drinking water standard; In the co-adsorption system, As(V) and Cd(II) influence each other's adsorption behavior due to the anionic bridge and shielding effect of As(V) on Cd(II), As(V) gradually changed from monolayer adsorption to multi-layer adsorption dominant, while Cd(II) gradually changed from multi-layer adsorption to monolayer adsorption dominant. In this paper, the structure-activity relationship between material structure and synchronous removal of arsenic and cadmium was clarified, and the mechanism of synchronous removal was revealed, which provided technical guidance for synchronous removal of As(V) and Cd(II) from non-ferrous metal smelting wastewater.
Collapse
Affiliation(s)
- Donghui Chen
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ruiyue Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Fangming Nan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Hong Li
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Ping Huang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China
| | - Wei Zhan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China.
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
4
|
Sharma S, Sudhaik A, Khan AAP, Saini AK, Mittal D, Nguyen VH, Van Le Q, Ahamad T, Raizada P, Singh P. Potential of novel dual Z-scheme carbon quantum dots decorated MnIn 2S 4/CdS/Bi 2S 3 heterojunction for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27591-0. [PMID: 37258806 DOI: 10.1007/s11356-023-27591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
In this work, CQDs decorated MnIn2S4/CdS/Bi2S3 heterojunction was prepared successfully by hydrothermal technique for photocatalytic disinfection of Escherichia coli (E. coli) and mineralization of methyl orange (MO) dye. The charge transferal route and mineralization process in CQDs-MnIn2S4/CdS/Bi2S3 heterojunction were comprehensively investigated by advanced spectroscopic techniques. The improved visible-light activity and enhanced photo-generated charge transferal efficacy caused dual Z-scheme CQDs-MnIn2S4/CdS/Bi2S3 heterojunction to achieve boosted photodegradation ability. The catalytic degradation trend was followed as CQDs-MnIn2S4/CdS/Bi2S3 > MnIn2S4 > CdS > Bi2S3. The dye was mineralized within 180 min under visible light irradiation. The effect of reaction parameters, pH effect, catalyst dosage, and H2O2 addition on MO degradation was also investigated. The degradation rate was maximal at pH 4 with a pseudo-first-order rate constant, 0.0438 min-1. The assessment of antibacterial properties revealed that CQDs-MnIn2S4/CdS/Bi2S3 composite effectively inactivated E. coli under visible light. Scavenging experiments, transient photocurrent response, and electron spin resonance spectroscopy suggested that •[Formula: see text] and holes were the dominant reactive species. The Z-scheme heterojunction is recyclable up to ten photocatalytic cycles according to recycling experiments. This research indicates the importance of dual Z-scheme CQDs decorated MnIn2S4/CdS/Bi2S3 heterojunction in wastewater remediation.
Collapse
Affiliation(s)
- Sheetal Sharma
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
- Department of Chemistry, School of Computer Science and Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Anita Sudhaik
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research and Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Adesh K Saini
- Department of Biotechnology, MMEC and Central Research Cell, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, HR, 133207, India
| | - Divya Mittal
- Department of Biotechnology, MMEC and Central Research Cell, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, HR, 133207, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kanchipuram District, Kelambakkam, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-Gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
5
|
Mehanathan S, Jaafar J, Nasir AM, Ismail AF, Matsuura T, Othman MHD, Rahman MA, Yusof N. Magnesium Oxide Nanoparticles for the Adsorption of Pentavalent Arsenic from Water: Effects of Calcination. MEMBRANES 2023; 13:membranes13050475. [PMID: 37233536 DOI: 10.3390/membranes13050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The occurrence of heavy metal ions in water is intractable, and it has currently become a serious environmental issue to deal with. The effects of calcining magnesium oxide at 650 °C and the impacts on the adsorption of pentavalent arsenic from water are reported in this paper. The pore nature of a material has a direct impact on its ability to function as an adsorbent for its respective pollutant. Calcining magnesium oxide is not only beneficial in enhancing its purity but has also been proven to increase the pore size distribution. Magnesium oxide, as an exceptionally important inorganic material, has been widely studied in view of its unique surface properties, but the correlation between its surface structure and physicochemical performance is still scarce. In this paper, magnesium oxide nanoparticles calcined at 650 °C are assessed to remove the negatively charged arsenate ions from an aqueous solution. The increased pore size distribution was able to give an experimental maximum adsorption capacity of 115.27 mg/g with an adsorbent dosage of 0.5 g/L. Non-linear kinetics and isotherm models were studied to identify the adsorption process of ions onto the calcined nanoparticles. From the adsorption kinetics study, the non-linear pseudo-first order showed an effective adsorption mechanism, and the most suitable adsorption isotherm was the non-linear Freundlich isotherm. The resulting R2 values of other kinetic models, namely Webber-Morris and Elovich, were still below those of the non-linear pseudo-first-order model. The regeneration of magnesium oxide in the adsorption of negatively charged ions was determined by making comparisons between fresh and recycled adsorbent that has been treated with a 1 M NaOH solution.
Collapse
Affiliation(s)
- Shaymala Mehanathan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Atikah Mohd Nasir
- Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
6
|
Cheng F, Nie F, Fan Y, Huang D, Wang Y, Fan J. One-pot synthesis of novel flower-like LaCO 3OH adsorbents for efficient scavenging of phosphate from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55009-55023. [PMID: 36882650 DOI: 10.1007/s11356-023-26266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus removal from wastewater has been considered as an effective method to control eutrophication and mitigate phosphorus deficiency. Phosphate adsorption using lanthanum-based materials has awakened much attention and triggered extensive research. In this study, novel flower-like LaCO3OH materials were synthesized via a one-step hydrothermal method and evaluated for phosphate removal from wastewater. The adsorbent with flower-like structures prepared at the hydrothermal reaction time of 4.5 h (BLC-4.5) exhibited the optimum adsorption performance. BLC-4.5 had a rapid removal rate with more than 80% of the saturated adsorbed phosphate removed within 20 min. Furthermore, the maximum phosphate adsorption capacity of BLC-4.5 was as high as 228.5 mg/g. Notably, the La leaching amount of BLC-4.5 was negligible in the pH range of 3.0-11.0. BLC-4.5 outperformed most of the reported La-based adsorbents in terms of removal rate, adsorption capacity, and La leaching amount. Moreover, BLC-4.5 had broad pH adaptability (3.0-11.0) and high selectivity for phosphate. BLC-4.5 also displayed excellent phosphate removal efficiency in actual wastewater and great recyclability. The potential adsorption mechanisms of phosphate on BLC-4.5 were precipitation, electrostatic attraction, and inner-sphere complexation via ligand exchange. This study demonstrates that the newly developed flower-like BLC-4.5 reported here is a promising adsorbent for the effective treatment of phosphate in wastewater.
Collapse
Affiliation(s)
- Fulong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Three Gorges University, Chongqing, 404100, China
| | - Fangui Nie
- Chongqing Three Gorges University, Chongqing, 404100, China
| | - Yuting Fan
- Chongqing Three Gorges University, Chongqing, 404100, China
| | - Dan Huang
- Chongqing Three Gorges University, Chongqing, 404100, China
| | - Yinian Wang
- Chongqing Three Gorges University, Chongqing, 404100, China
| | - Jianxin Fan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
7
|
Tang L, Xie X, Li C, Xu Y, Zhu W, Wang L. Regulation of Structure and Anion-Exchange Performance of Layered Double Hydroxide: Function of the Metal Cation Composition of a Brucite-like Layer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7983. [PMID: 36431469 PMCID: PMC9697245 DOI: 10.3390/ma15227983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As anion-exchange materials, layered double hydroxides (LDHs) have attracted increasing attention in the fields of selective adsorption and separation, controlled drug release, and environmental remediation. The metal cation composition of the laminate is the essential factor that determines the anion-exchange performance of LDHs. Herein, we review the regulating effects of the metal cation composition on the anion-exchange properties and LDH structure. Specifically, the internal factors affecting the anion-exchange performance of LDHs were analyzed and summarized. These include the intercalation driving force, interlayer domain environment, and LDH morphology, which significantly affect the anion selectivity, anion-exchange capacity, and anion arrangement. By changing the species, valence state, size, and mole ratio of the metal cations, the structural characteristics, charge density, and interlayer spacing of LDHs can be adjusted, which affect the anion-exchange performance of LDHs. The present challenges and future prospects of LDHs are also discussed. To the best of our knowledge, this is the first review to summarize the essential relationship between the metal ion composition and anion-exchange performance of laminates, providing important insights for regulating the anion-exchange performance of LDHs.
Collapse
Affiliation(s)
- Luwen Tang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China
| | - Xiangli Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Che J, Zhang W, Ma B, Chen Y, Wang L, Wang C. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157063. [PMID: 35780900 DOI: 10.1016/j.scitotenv.2022.157063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Recovering harmful elements (As, Pb) and metals (Cu, Bi, Zn) from copper smelting flue dust (CSFD) is a critical subject and task for arsenic contamination control and resource sustainability. In this work, a two-step pyrometallurgical process was developed to preferentially separate arsenic and recover metals from CSFD. During the low-temperature roasting, arsenic-bearing waste acid (AWA) from copper industry was used as an additive and effective removal of arsenic (97.8 %) was obtained at 350 °C, which follows the idea of "treating waste with waste". Subsequently, the recovery and separation of metals were well-achieved based on the affinity between metals and sulfur in the second stage of roasting, by which 91.28 % of Pb and 95.65 % of Bi were recovered as an alloy (Pb 86.48 %, Bi 13.21 %), while 82.62 % of Cu was enriched in the matte. The migration rules of metal elements and phase transformation in the whole process were studied in-depth from theory and experiments. This process can realize the efficient removal of arsenic as well as effective recovery of metals via cooperative disposal of CSFD and AWA, and minimize the environmental impacts.
Collapse
Affiliation(s)
- Jianyong Che
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjuan Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Baozhong Ma
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ling Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
9
|
Review of the Application of Hydrotalcite as CO2 Sinks for Climate Change Mitigation. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent decades, the environmental impact caused by greenhouse gases, especially CO2, has driven many countries to reduce the concentration of these gases. The study and development of new designs that maximise the efficiency of CO2 capture continue to be topical. This paper presents a review of the application of hydrotalcites as CO2 sinks. There are several parameters that can make hydrotalcites suitable for use as CO2 sinks. The first question is the use of calcined or uncalcined hydrotalcite as well as the temperature at which it is calcined, since the calcination conditions (temperature, rate and duration) are important parameters determining structure recovery. Other aspects were also analysed: (i) the influence of the pH of the synthesis; (ii) the molar ratio of its main elements; (iii) ways to increase the specific area of hydrotalcites; (iv) pressure, temperature, humidity and time in CO2 absorption; and (v) combined use of hydrotalcites and cement-based materials. A summary of the results obtained so far in terms of CO2 capture with the parameters described above is presented. This work can be used as a guide to address CO2 capture with hydrotalcites by showing where the information gaps are and where researchers should apply their efforts.
Collapse
|