1
|
Reyes Alva R, Mohr M, Zibek S. Transmembrane Chemical Absorption Process for Recovering Ammonia as an Organic Fertilizer Using Citric Acid as the Trapping Solution. MEMBRANES 2024; 14:102. [PMID: 38786937 PMCID: PMC11123178 DOI: 10.3390/membranes14050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Membrane contactors are among the available technologies that allow a reduction in the amount of ammoniacal nitrogen released into the environment through a process called transmembrane chemical absorption (TMCA). This process can be operated with different substances acting as trapping solutions; however, strong inorganic acids have been studied the most. The purpose of this study was to demonstrate, at laboratory scale, the performance of citric acid as a capturing solution in TMCA processes for recovering ammonia as an organic fertilizer from anaerobic digestor reject water using membrane contactors in a liquid-liquid configuration and to compare it with the most studied solution, sulfuric acid. The experiments were carried out at 22 °C and 40 °C and with a feed water pH of 10 and 10.5. When the system was operated at pH 10, the rates of recovered ammonia from the feed solution obtained with citric acid were 10.7-16.5 percentage points (pp) lower compared to sulfuric acid, and at pH 10.5, the difference decreased to 5-10 pp. Under all tested conditions, the water vapor transport in the system was lower when using citric acid as the trapping solution, and at pH 10 and 40 °C, it was 5.7 times lower. When estimating the operational costs for scaling up the system, citric acid appears to be a better option than sulfuric acid as a trapping solution, but in both cases, the process was not profitable under the studied conditions.
Collapse
Affiliation(s)
- Ricardo Reyes Alva
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
| | - Marius Mohr
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstr. 12, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Serra-Toro A, Abboud YBH, Cardete-Garcia MA, Astals S, Valentino F, Mas F, Dosta J. Ammoniacal nitrogen recovery from swine slurry using a gas-permeable membrane: pH control strategies and feed-to-trapping volume ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32193-5. [PMID: 38376782 DOI: 10.1007/s11356-024-32193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/21/2024] [Indexed: 02/21/2024]
Abstract
Gas-permeable membrane (GPM) technology is gaining interest to recover nitrogen from residual effluents due to its effectiveness, simple operation and capacity of producing a nutrient rich product with fertilising value. In this study, a GPM contactor was used at 25 °C to recover total ammoniacal nitrogen (TAN) from swine slurry as a concentrated (NH4)2SO4 solution. Firstly, a synthetic solution was tested on a wide pH range (6-12). Results showed that the ammonia mass transfer constants (Km) increased from 7.9·10-9 to 1.2·10-6 m/s as the pH increased. The reagent consumption to control the pH per mole nitrogen recovered had a minimum at pH 9, which showed a Km value of 3.0·10-7 m/s. Secondly, various pH control strategies were tested using swine slurry, including (i) no pH control, (ii) pH control at 8.5, 9.0 and 10.0, and (iii) an initial spike of the NaOH equivalent to the required to control the pH at 9. The test without pH control reached a TAN recovery of around 60%, which could be an interesting strategy when high nitrogen recoveries or short operating times are not required. The pH control at 9 stood out as the most favourable operating condition due to its high Km and lower reagent consumption. Thirdly, several feed-to-trapping volume ratios ranging from 1:1 to 15:1 were tested using swine slurry at pH 9. These assays revealed that a GPM process with a high feed-to-trapping volume ratio fastens the recovery of 99% of TAN as a high purity (NH4)2SO4 solution containing 40 g N/L.
Collapse
Affiliation(s)
- Andreu Serra-Toro
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Yasmina Ben Hammou Abboud
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Maria Alicia Cardete-Garcia
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Sergi Astals
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesco Valentino
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Mestre-Venice, Italy
| | - Francesc Mas
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Joan Dosta
- Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Barcelona, Catalonia, Spain.
- Water Research Institute, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Sheikh M, Harami HR, Rezakazemi M, Cortina JL, Aminabhavi TM, Valderrama C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH 3-N recovery technologies: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166077. [PMID: 37544447 DOI: 10.1016/j.scitotenv.2023.166077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Ammonia (NH3), as a prevalent pollutant in municipal wastewater discharges, can impair aquatic life and have a negatively impact on the environment. Proper wastewater treatment and management practices are essential to protect ecosystems and keep human populations healthy. Therefore, using highly effective NH3-N recovery technologies at wastewater treatment plants (WWTPs) is widely acknowledged as a necessity. In order to improve the overall efficiency of NH3 removal/recovery processes, innovative technologies have been generally applied to reduce its concentration when discharged into natural water bodies. This study reviews the current status of the main issues affecting NH3 recovery from municipal/domestic wastewater discharges. The current study investigated the ability to recover valuable resources, e.g., nutrients, regenerated water, and energy in the form of biogas through advanced and innovative methods in tertiary treatment to achieve higher efficiency towards sustainable wastewater and resource recovery facilities (W&RRFs). In addition, the concept of paradigm shifts from WWTP to a large/full scale W&RRF has been studied with several examples of conversion to innovative bio-factories producing materials. On the other hand, the carbon footprint and the high-energy consumption of the WWTPs were also considered to assess the sustainability of these facilities.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Hossein Riasat Harami
- Department of Chemical and Biological Engineering, The University of Alabama, AL, USA
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Jose Luis Cortina
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Water Technology Center (CETaqua), Carretera d'Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India
| | - Cesar Valderrama
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain.
| |
Collapse
|
4
|
Cifuentes-Cabezas M, Luján-Facundo MJ, Cuartas-Uribe B, Iborra-Clar A, Mendoza-Roca JA. Nitrogen recovery from sludge centrate by membrane contactor: Influence of operating parameters and cleaning conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118051. [PMID: 37126867 DOI: 10.1016/j.jenvman.2023.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
In urban wastewater treatment, the sludge generated is treated by anaerobic digestion, to be subsequently dehydrated by centrifuges. Currently, the liquid fraction obtained in this dehydration process is recirculated at the head of the treatment plant. However, its high nitrogen and phosphorus content makes it an effluent with high added value. The recovery of these nutrients could be an excellent alternative for the production of fertilizers or other industrial applications. In this study, the use of a liquid-liquid phase membrane contactor is presented as a favorable solution for the recovery of ammoniacal nitrogen from sludge centrated. The polypropylene hollow fiber membrane was evaluated considering its ammonia removal and recovery capacity. For this, different parameters were evaluated: the influence of the type and concentration of the acid solution, the wastewater pH, the flow rates of feeding and the acid stripping solution, and the contact time. Results showed that with a contact time of 65 min, ammonia removal and recovery percentages of the order of 90% were achieved. The flow rates of the stripping and feed solutions together with the acid concentration did not have a significant influence on the removal but on the recovery. Concerning used acid, sulphuric and phosphoric acid solutions achieved better results than nitric acid solution. The most critical parameter was the pH, obtaining the highest removal and recovery of ammonium at the highest pH. Finally, a stable cleaning protocol was obtained, between preventive and moderate cleanings to avoid severe cleanings, keeping the membrane at its maximum capacity.
Collapse
Affiliation(s)
- Magdalena Cifuentes-Cabezas
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain.
| | - María-José Luján-Facundo
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - Beatriz Cuartas-Uribe
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - Alicia Iborra-Clar
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| | - José-Antonio Mendoza-Roca
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Spain; Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Spain
| |
Collapse
|
5
|
Rodríguez-Alegre R, Zapata-Jiménez J, You X, Pérez-Moya M, Sanchis S, García-Montaño J. Nutrient recovery and valorisation from pig slurry liquid fraction with membrane technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162548. [PMID: 36870507 PMCID: PMC10060121 DOI: 10.1016/j.scitotenv.2023.162548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 05/21/2023]
Abstract
Livestock slurry has been reported to be a potential secondary raw material as it contains macronutrients ‑nitrogen, phosphorus and potassium-, which could be valorised as high-quality fertilizers if proper separation and concentration of valuable compounds is performed. In this work, pig slurry liquid fraction was assessed for nutrient recovery and valorisation as fertilizer. Some indicators were used to evaluate the performance of proposed train of technologies within the framework of circular economy. As ammonium and potassium species are highly soluble at the whole pH range, a study based on phosphate speciation at pH from 4 to 8 was assessed to improve the macronutrients recovery from the slurry, resulting in two different treatment trains at acidic and alkaline conditions. The acidic treatment system based on centrifugation, microfiltration and forward osmosis was applied to obtain a nutrient-rich liquid organic fertilizer containing 1.3 % N, 1.3 % P2O5 and 1.5 % K2O. The alkaline path of valorisation was composed by centrifugation and stripping by using membrane contactors to produce an organic solid fertilizer -7.7 % N, 8,0 % P2O5 and 2.3 % K2O-, ammonium sulphate solution -1.4 % N- and irrigation water. In terms of circularity indicators, 45.8 % of the initial water content and <50 % of contained nutrients were recovered - 28.3 % N, 43.5 % P2O5 and 46.6 % K2O - in the acidic treatment resulting in 68.68 g fertilizer per kg of treated slurry. 75.1 % of water was recovered as irrigation water and 80.6 % N, 99.9 % P2O5, 83.4 % K2O was valorised in the alkaline treatment, as 219.60 g fertilizer per kg of treated slurry. Treatment paths at acidic and alkaline conditions yield promising results for nutrients recovery and valorisation as the obtained products (nutrient rich organic fertilizer, solid soil amendment and ammonium sulphate solution) fulfil the European Regulation for fertilizers to be potentially used in crop fields.
Collapse
Affiliation(s)
- Rubén Rodríguez-Alegre
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain; Universitat Politécnica de Catalunya, Chemical Engineering department, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08019 Barcelona, Spain.
| | - Julia Zapata-Jiménez
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Xialei You
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Montserrat Pérez-Moya
- Universitat Politécnica de Catalunya, Chemical Engineering department, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08019 Barcelona, Spain.
| | - Sonia Sanchis
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| | - Julia García-Montaño
- Leitat Technological Center, Circular Economy department, C/ de La Innovació 2, 08225 Terrassa, Barcelona, Spain.
| |
Collapse
|
6
|
Karanasiou A, Angistali K, Plakas KV, Kostoglou M, Karabelas AJ. Ammonia recovery from anaerobic-fermentation liquid digestate with vacuum membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Aguilar-Moreno M, Vinardell S, Reig M, Vecino X, Valderrama C, Cortina JL. Impact of Sidestream Pre-Treatment on Ammonia Recovery by Membrane Contactors: Experimental and Economic Evaluation. MEMBRANES 2022; 12:membranes12121251. [PMID: 36557158 PMCID: PMC9787290 DOI: 10.3390/membranes12121251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 05/19/2023]
Abstract
Membrane contactor is a promising technology for ammonia recovery from the anaerobic digestion centrate. However, high suspended solids and dissolved organic matter concentrations can reduce the effectiveness of the technology. In this study, coagulation-flocculation (C/F) and aeration pre-treatments were evaluated to reduce chemical oxygen demand (COD), turbidity, suspended solids and alkalinity before the ammonia recovery stage using a membrane contactor. The mass transfer coefficient (Km) and total ammonia (TAN) recovery efficiency of the membrane contactor increased from 7.80 × 10-7 to 1.04 × 10-5 m/s and from 8 to 67%, respectively, after pre-treating the real sidestream centrate. The pre-treatment results showed that dosing aluminium sulphate (Al2(SO4)3) at 30 mg Al/L was the best strategy for the C/F process, providing COD, turbidity and TSS removal efficiencies of 50 ± 5, 95 ± 3 and 90 ± 4%, respectively. The aeration step reduced 51 ± 6% the HCO3- content and allowed reducing alkaline consumption by increasing the pH before the membrane contactor. The techno-economic evaluation showed that the combination of C/F, aeration and membrane contactor can be economically feasible for ammonia recovery. Overall, the results of this study demonstrate that C/F and aeration are simple and effective techniques to improve membrane contactor performance for nitrogen recovery from the anaerobic digestion centrate.
Collapse
Affiliation(s)
- Miguel Aguilar-Moreno
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4016997
| | - Sergi Vinardell
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- CETaqua, Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
8
|
Guillen-Burrieza E, Moritz E, Hobisch M, Muster-Slawitsch B. Recovery of ammonia from centrate water in urban waste water treatment plants via direct contact membrane distillation: Process performance in long-term pilot-scale operation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Reig M, Vecino X, Aguilar-Moreno M, Valderrama C, Cortina JL. Ammonia Valorization by Liquid–Liquid Membrane Contactors for Liquid Fertilizers Production: Experimental Conditions Evaluation. MEMBRANES 2022; 12:membranes12070663. [PMID: 35877865 PMCID: PMC9316485 DOI: 10.3390/membranes12070663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Liquid–liquid membrane contactors (LLMCs) were studied as a sustainable technology for ammonia recovery from wastewater. Ammonia can be valorized by LLMCs as a potential nutrient and produce liquid fertilizers. Thus, this work aims for the study of different experimental LLMC conditions to produce ammonium salts by an acid stripping stream. The experiments were conducted using two 3MTMLiqui-CellTM LLMC in a series, located in the vertical position and using HNO3 as the acid stripping solution. The flow rates for the feed and stripping sides were fixed during the tests, and two steps were conducted based on previous works. However, different experimental conditions were evaluated to determine its effect on the overall performance: (i) replacing the feed or stripping solution between the steps, (ii) the initial ammonia concentration of the feed solution, (iii) feed volume and (iv) feed temperature. The results demonstrated that better achievements were obtained replacing the acid stripping solution between steps, whereas the feed temperature did not substantially affect the overall performance. Additionally, a high initial ammonia concentration provided more ammonia recovery, although the concentration factor achieved was higher for the low initial ammonia concentration. Finally, a high feed volume afforded better results for the fertilizer side, whereas more NH3 recovery was achieved using less feed volume.
Collapse
Affiliation(s)
- Mònica Reig
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (X.V.); (M.A.-M.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Correspondence: ; Tel.: +34-934016184
| | - Xanel Vecino
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (X.V.); (M.A.-M.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Research Center in Technologies, Energy and Industrial Processes (CINTECX), Chemical Engineering Department, Campus As Lagoas-Marcosende, University of Vigo, 36310 Vigo, Spain
| | - Miguel Aguilar-Moreno
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (X.V.); (M.A.-M.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - César Valderrama
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (X.V.); (M.A.-M.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - José Luis Cortina
- Chemical Engineering Department, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs, Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/Eduard Maristany 10-14, 08930 Barcelona, Spain; (X.V.); (M.A.-M.); (C.V.); (J.L.C.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal-Besòs, 08930 Barcelona, Spain
- Water Technology Centre (CETaqua), Carretera d’Esplugues, 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
10
|
Rivera F, Muñoz R, Prádanos P, Hernández A, Palacio L. A Systematic Study of Ammonia Recovery from Anaerobic Digestate Using Membrane-Based Separation. MEMBRANES 2021; 12:membranes12010019. [PMID: 35054545 PMCID: PMC8777830 DOI: 10.3390/membranes12010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Ammonia recovery from synthetic and real anaerobic digestates was accomplished using hydrophobic flat sheet membranes operated with H2SO4 solutions to convert ammonia into ammonium sulphate. The influence of the membrane material, flow rate (0.007, 0.015, 0.030 and 0.045 m3 h−1) and pH (7.6, 8.9, 10 and 11) of the digestate on ammonia recovery was investigated. The process was carried out with a flat sheet configuration at a temperature of 35 °C and with a 1 M, or 0.005 M, H2SO4 solution on the other side of the membrane. Polytetrafluoroethylene membranes with a nominal pore radius of 0.22 µm provided ammonia recoveries from synthetic and real digestates of 84.6% ± 1.0% and 71.6% ± 0.3%, respectively, for a membrane area of 8.6 × 10−4 m2 and a reservoir volume of 0.5 L, in 3.5 h with a 1 M H2SO4 solution and a recirculation flow on the feed side of the membrane of 0.030 m3 h−1. NH3 recovery followed first order kinetics and was faster at higher pHs of the H2SO4 solution and recirculation flow rate on the membrane feed side. Fouling resulted in changes in membrane surface morphology and pore size, which were confirmed by Atomic Force Microscopy and Air Displacement Porometry.
Collapse
Affiliation(s)
- Fanny Rivera
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Antonio Hernández
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; (F.R.); (R.M.); (P.P.); (A.H.)
- Department of Applied Physics, Science Faculty, University of Valladolid, 47011 Valladolid, Spain
- Correspondence:
| |
Collapse
|