1
|
Qi J, Li M, Yin E, Zhang H, Wang H, Li X. Degradation of tetracycline under a wide pH range in a heterogeneous photo bio-electro-fenton system using FeMn-LDH/g-C 3N 4 cathode: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121111. [PMID: 38761620 DOI: 10.1016/j.jenvman.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
The widespread use of antibiotics and the inefficiency of traditional degradation treatments pose threats to the environment and human health. Previous studies have reported the potential of bio-electro-Fenton (BEF) processes for antibiotic removal. However, some drawbacks, such as a strict pH range of 2-3 and iron sludge generation, limit their large-scale application. Thus, to overcome the narrow pH range of traditional BEF processes, a photo-BEF (PBEF) system was established using a novel FeMn-layered double hydroxide (LDH)/graphitic carbon nitride (g-C3N4) (FM/CN) composite cathode. The performance of the PBEF system was investigated by degrading tetracycline (TC) under low-power LED lamp irradiation. The results indicated that the pH range of the PBEF system could be expanded to 3-11 using an FM/CN cathode, which exhibited a TC removal efficiency of 63.0%-75.9%. The highest TC removal efficiency was achieved at pH 7. The efficient mineralization of TC by the PBEF system can be high, up to 67.6%. In addition, the TC removal mechanism was discussed in terms of reactive oxygen species, TC degradation intermediate analyses, and density functional theory (DFT) calculations. Strong oxidative hydroxyl radicals (·OH) were the dominant reactive oxidizing species in the PBEF system, followed by ·O2- and h+. Three pathways of TC degradation were proposed based on the analysis of intermediates, and the reactive sites attacked by electrophilic reagents were explored using DFT modeling. In addition, the overall toxicity of TC degradation intermediates effectively decreased in the PBEF system. This work offers deep insights into the TC removal mechanisms and performance of the PBEF system over a wide pH range of 3-11.
Collapse
Affiliation(s)
- Jinqiu Qi
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Ming Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hanyu Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haiman Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
2
|
Comanescu C, Racovita RC. An Overview of Degradation Strategies for Amitriptyline. Int J Mol Sci 2024; 25:3822. [PMID: 38612638 PMCID: PMC11012176 DOI: 10.3390/ijms25073822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Antidepressant drugs play a crucial role in the treatment of mental health disorders, but their efficacy and safety can be compromised by drug degradation. Recent reports point to several drugs found in concentrations ranging from the limit of detection (LOD) to hundreds of ng/L in wastewater plants around the globe; hence, antidepressants can be considered emerging pollutants with potential consequences for human health and wellbeing. Understanding and implementing effective degradation strategies are essential not only to ensure the stability and potency of these medications but also for their safe disposal in line with current environment remediation goals. This review provides an overview of degradation pathways for amitriptyline, a typical tricyclic antidepressant drug, by exploring chemical routes such as oxidation, hydrolysis, and photodegradation. Connex issues such as stability-enhancing approaches through formulation and packaging considerations, regulatory guidelines, and quality control measures are also briefly noted. Specific case studies of amitriptyline degradation pathways forecast the future perspectives and challenges in this field, helping researchers and pharmaceutical manufacturers to provide guidelines for the most effective degradation pathways employed for minimal environmental impact.
Collapse
Affiliation(s)
- Cezar Comanescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - Radu C. Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
3
|
Xue C, Ma J, Chen X, Liu D, Huang W. Efficient degradation of 2,4-dichlorophenol by heterogeneous electro-Fenton using bulk carbon aerogels modified in situ with FeCo-LDH as cathodes: Operational parameters and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119114. [PMID: 37783084 DOI: 10.1016/j.jenvman.2023.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
In this study, an in situ grown FeCo-Layered double hydroxide anchored to the surface of a bulk carbon aerogel (FeCo-LDH/CA) for contaminant degradation during the heterogeneous electro-Fenton (EF) process. The results exhibited that the FeCo-LDH/CA cathode achieved 100% of 2,4-dichlorophenol (2,4-DCP = 20 mg/L) degradation within 120 min at pH = 3, application current 20 mA, and Na2SO4 concentration 0.05 M. Moreover, the degradation efficiency was impressive in the range of pH = 2-9. The coexistence of the Fe (III)/Fe (II) and Co (III)/Co (II) as active sites on the cathode surface promoted the in-situ decomposition of H2O2 to form reactive oxygen species (ROS). •OH and O2- were confirmed to be the major degradation pollutants of ROS. Furthermore, density functional theory (DFT) was used to predict the reaction sites of 2,4-DCP, and its possible degradation pathways were proposed. The toxicity of intermediate products was evaluated and decreased after degradation. In addition, the eight cycle experiments and the degradation of other typical contaminants demonstrated the satisfactory stability and applicability of the synthetic cathode. This study presents the preparation of an efficient and stable EF cathode, further promoting the application of iron-based composites in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Xue
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianrui Ma
- China Academy of Information and Communications Technology, Beijing, 100191, China
| | - Xi Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Dongfang Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Zhang H, He Y, He M, Yang Q, Ding G, Mo Y, Liu Z, Gao P. Construction of cubic CaTiO 3 perovskite modified by highly-dispersed cobalt for efficient catalytic degradation of psychoactive pharmaceuticals. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132191. [PMID: 37544175 DOI: 10.1016/j.jhazmat.2023.132191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Sulfate radical mediated advanced oxidation processes (SR-AOPs) have emerged as a promising alternative for emerging contaminants degradation. However, high activity and great stability are commonly difficult to juggle, and the structure-activity correlations are still ambiguous. This study constructed the cubic CaTiO3 perovskite modified by highly-dispersed cobalt for peroxymonosulfate (PMS) activation to improve the specific lattice plane exposure and reduce the metal leaching simultaneously. 98% of amitriptyline (AMT) degradation was achieved within 60 min under the condition of 200 mg/L Co0.1-CTO and 100 mg/L PMS. The results indicated that surface Co2+/Co3+ redox couple and lattice oxygen were responsible for PMS activation, and the evolution of ·OH, SO4·- and 1O2 were revealed. According to density functional theory (DFT) calculations, the highly-dispersed Co on cubic surface effectively captured PMS and promoted electron transfer for the generation of ·OH and SO4·-, while more oxygen atoms exposed on Co0.1-CTO(200) surface facilitated the generation of 1O2. Briefly, this study provides a novel strategy of catalyst synthesis in PMS activation for water treatment.
Collapse
Affiliation(s)
- Hangjun Zhang
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Hangzhou International Urbanology Research Center and Center for Zhejiang Urban Governance Studies, 311121, Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Yunyi He
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Mengfan He
- School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Qiyue Yang
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Guoyi Ding
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Yuanshuai Mo
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China
| | - Panpan Gao
- School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, 311121 Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang C, Ye M, Li H, Liu Z, Fu Z, Zhang H, Wang G, Zhang Y. Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Priyadarshini M, Ahmad A, Ghangrekar MM. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe 3O 4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121242. [PMID: 36758930 DOI: 10.1016/j.envpol.2023.121242] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived Fe3O4@C (MIL-53(Fe)@Fe3O4@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.68 ± 3.61% degradation of 50 mg L-1 of SA under optimum current density of 5.2 mA cm-2, and pH of 7.0 during 180 min of electrolysis time. The degradation of SA from waste catalyst was similar to the chemical-based MIL-53(Fe)-derived Fe3O4@C (cFe) cathode catalyst. The presence of chloride ions (Cl-) in the water matrix has shown a strong inhibitory effect on the elimination of SA, followed by nitrate (NO3-), and bicarbonate (HCO3-) ions. The multiple cyclic voltammetry (CV) analysis and reusability test of waste cathode catalyst showed only 8.03% drop of current density at the end of the 20th cycle and 5% drop of degradation efficiency after 6th cycle with low leaching of iron. The radical scavenging experiment revealed that the HO• generated via electrochemical generation of H2O2 had a prominent contribution in the removal of SA compared to HO2•/O2•-. Besides, possible catalysis mechanism and degradation pathways were deduced. Furthermore, a satisfactory performance in the treatment of SA spiked in real water matrices was also observed by waste-derived Fe3O4@C cathode catalyst (wFe). Additionally, the total operating cost and toxicity analysis showed that the as-synthesized wFe cathode catalyst could be appropriate for removing organic pollutants from wastewater in the large-scale application.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|