1
|
Wang Y, Zhang Y, Liang L, Tu F, Li Z, Tang X, Dai L, Li L. Research Progress on Membrane Separation Technology for Oily Wastewater Treatment. TOXICS 2024; 12:794. [PMID: 39590977 PMCID: PMC11598286 DOI: 10.3390/toxics12110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This paper presents the research progress and future prospects of membrane separation technology for treating oily wastewater. It discusses various treatment methods tailored to different sources and characteristics of oily wastewater, summarizing the features of different membrane separation technologies and the latest advancements in their application. The paper concludes by emphasizing the need for future research to focus on developing environmentally friendly and efficient coupled membrane treatment technologies, optimizing membrane material design and enhancing the environmental benefits of oily wastewater treatment.
Collapse
Affiliation(s)
- Yichang Wang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Yu Zhang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Liang Liang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Feng Tu
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Zhongjian Li
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, China;
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Li Dai
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Lingli Li
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| |
Collapse
|
2
|
Pi P, Ren Z, Yang Y, Chen W, Lin Y. A review of various dimensional superwetting materials for oil-water separation. NANOSCALE 2024; 16:17248-17275. [PMID: 39225194 DOI: 10.1039/d4nr01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the application and fabrication technologies of superwetting materials in the field of oil-water separation have become a research hotspot, aiming to address challenges in marine oil spill response and oily wastewater treatment. Simultaneously, the fabrication technologies and related applications of superwetting materials have been increasingly diversified. This paper systematically reviews the sources and hazards of oily wastewater and oil-water emulsions, several traditional oil-water separation methods, and their limitations, thereby highlighting the advantages of superwetting materials. Additionally, this paper provides an overview of the fundamental theories of wetting and conducts a microanalysis of the penetration mechanism based on Laplace pressure at the gas-liquid-solid three-phase interface. Following this, the latest advances in superwetting oil-water separation materials are elucidated, focusing on five categories: (i) superhydrophobic-superoleophilic materials; (ii) superhydrophilic-underwater superoleophobic materials; (iii) superhydrophobic-superoleophobic materials; (iv) "special" superwetting materials; and (v) smart switchable superwetting materials. This paper innovatively discusses these materials from the perspectives of two-dimensional and three-dimensional materials, deeply studying the mechanisms of oil-water separation and using data to quantify the separation efficiency. Comparative discussions are conducted on the materials from various dimensions, including different substrates, innovations in existing technologies, and fabrication methods as discussed in various articles, followed by corresponding summaries. Finally, the existing shortcomings and challenges of current superwetting materials are summarized, and prospects are proposed. We firmly believe that developing low-cost, stable, environmentally friendly, and practical large-scale superwetting oil-water separation materials will have broad application prospects and potential in the future.
Collapse
Affiliation(s)
- Peng Pi
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Yu Yang
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Weiping Chen
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Youxi Lin
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| |
Collapse
|
3
|
Mohamad Esham MI, Ahmad AL, Othman MHD, Adam MR. Remediation of oily-produced water from high-salinity oilfield using a low-cost, high-alumina calcium bentonite hollow fiber membrane. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120894. [PMID: 38643621 DOI: 10.1016/j.jenvman.2024.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m2 h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m2.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m2.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.
Collapse
Affiliation(s)
- Mohamad Izrin Mohamad Esham
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia.
| | - Mohd Ridhwan Adam
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Mubashir M, Ahmad T, Liu X, Rehman LM, de Levay JPBB, Al Nuaimi R, Thankamony R, Lai Z. Artificial intelligence and structural design of inorganic hollow fiber membranes: Materials chemistry. CHEMOSPHERE 2023; 338:139525. [PMID: 37467860 DOI: 10.1016/j.chemosphere.2023.139525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A key challenge is to produce the uniform morphology and regular pore design of inorganic hollow fiber membranes (HFMs) due to involvement of multiple parameters including, fabrication process and materials chemistry. Inorganic HFMs required technical innovations via novel structural design and artificial intelligence (AI) to produce the uniform structure and regular pore design. Therefore, this review aims at critical analysis on the most recent and relevant approaches to tackle the issues related to tune the morphology and pore design of inorganic HFMs. Structural design and evaluation of routes towards the dope suspension, spinning, and sintering of inorganic HFMs are critically analysed. AI, driving forces and challenges involved for harnessing of materials are revealed in this review. AI programs used for the prediction of pore design and performance of HFMs have also been explained in this review. Overall, this review will provide the understanding to build the equilibrium in spinning and sintering processes to control the design of micro-channels, and structural properties of inorganic HFMs. This review has great significance to control the new design of membranes via AI programs. This review also explain the inorganic membrane efficiency as algal-bioreactor.
Collapse
Affiliation(s)
- Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Tausif Ahmad
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Xiaowei Liu
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lubna Muzamil Rehman
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jean-Pierre Benjamin Boross de Levay
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Roshni Thankamony
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Zou D, Zhou C, Gong Y, Zhong Z, Xing W. Efficient construction of tubular mullite fiber membrane filter with high gas permeance for gas/solid filtration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|