1
|
Huang P, Ying H, Zhang S, Zhang Z, Han WQ. Unlocking Ultrahigh Initial Coulombic Efficiency of MXene Anode via Presodiation and Electrolyte Optimization. ACS NANO 2024; 18:17996-18010. [PMID: 38924447 DOI: 10.1021/acsnano.4c04909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Guan S, Yang Y, Wang Y, Zhu X, Ye D, Chen R, Liao Q. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305854. [PMID: 37671789 DOI: 10.1002/adma.202305854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Indexed: 09/07/2023]
Abstract
As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.
Collapse
Affiliation(s)
- Shoujie Guan
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yang Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yuyang Wang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Dingding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Rong Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Ahmaruzzaman M. MXenes and MXene-supported nanocomposites: a novel materials for aqueous environmental remediation. RSC Adv 2022; 12:34766-34789. [PMID: 36540274 PMCID: PMC9723541 DOI: 10.1039/d2ra05530a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/22/2022] [Indexed: 08/29/2023] Open
Abstract
Water contamination has become a significant issue on a global scale. Adsorption is a cost-effective way to treat water and wastewater compared to other techniques such as the Advanced Oxidation Processes (AOPs), photocatalytic degradation, membrane filtration etc. Numerous research experts are continuously developing inexpensive substances for the adsorptive removal of organic contaminants from wastewater. A fresh and intriguing area of inquiry has emerged as a result of the development of MXenes. This article aims to provide a preliminary understanding of MXenes from synthesis, structure, and characterization to the scope of further research. The applications of MXenes as a new generation adsorbent for remediation of various kinds of organic pollutants and heavy metals from wastewater are also summarized. MXenes with altered surfaces may make effective adsorbents for wastewater treatment. Lastly, the mechanism of adsorption of organic contaminants and heavy metals on MXenes is also discussed for a better understanding of the readers.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
4
|
Simonenko EP, Simonenko NP, Nagornov IA, Simonenko TL, Gorobtsov PY, Mokrushin AS, Kuznetsov NT. Synthesis and Chemoresistive Properties of Single-Layer MXene Ti2CTx. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Abstract
MXene, an advanced family of 2D ceramic material resembling graphene, has had a considerable impact on the field of research because of its unique physiochemical properties. MXene has been synthesized by the selective etching of MAX via different techniques. However, with the passage of time, due to the need for further progress and improvement in MXene materials, ideas have turned toward composite fabrication, which has aided boosting the MXene composites regarding their properties and applications in various areas. Many review papers are published on MXene and their composites with polymer, carbon nanotube, graphene, other carbon, metal oxides and sulfides, etc., except metal composite, and such papers discuss these composites thoroughly. In this review article, we illustrate and explain the development of MXene-based metal composites. Furthermore, we highlight the synthesis techniques utilized for the preparation of MXene composites with metal. We briefly discuss the enhancement of properties of the composites and a wide range of applications as an electrode substance for energy storage devices, electrochemical cells, supercapacitors, and catalytic and anti-corrosive performance. Major obstacles in MXene and metal composite are mentioned and provide future recommendations. Together, they can overcome problems and enable MXene and composites on commercial-scale production.
Collapse
|