1
|
Butylskii D, Troitskiy V, Chuprynina D, Kharchenko I, Ryzhkov I, Apel P, Pismenskaya N, Nikonenko V. Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes. MEMBRANES 2023; 13:membranes13050455. [PMID: 37233516 DOI: 10.3390/membranes13050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl- (always present in phosphorus-containing waters) and H2PO4- anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.
Collapse
Affiliation(s)
- Dmitrii Butylskii
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Vasiliy Troitskiy
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Daria Chuprynina
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Ivan Kharchenko
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Ilya Ryzhkov
- Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia
- Siberian Federal University, 79 Svobodny, 660041 Krasnoyarsk, Russia
| | - Pavel Apel
- Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| |
Collapse
|
2
|
Istirokhatun T, Lin Y, Kinooka K, Shen Q, Zhang P, Jia Y, Matsuoka A, Kumagai K, Yoshioka T, Matsuyama H. Unveiling the impact of imidazole derivative with mechanistic insights into neutralize interfacial polymerized membranes for improved solute-solute selectivity. WATER RESEARCH 2023; 230:119567. [PMID: 36621280 DOI: 10.1016/j.watres.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/20/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Domestic wastewater (DWW) contains a reservoir of nutrients, such as nitrogen, potassium, and phosphorus; however, emerging micropollutants (EMPs) hinder its applications in resource recovery. In this study, a novel class of nanofiltration (NF) membranes was developed; it enabled the efficient removal of harmful EMP constituents while preserving valuable nutrients in the permeate. Neutral (IM-N) and positively charged (IM-P) imidazole derivative compounds have been used to chemically functionalize pristine polyamide (PA) membranes to synchronously inhibit the hydrolysis of residual acyl chloride and promote their amination. Owing to their distinct properties, these IM modifiers can custom-build the membrane physicochemical properties and structures to benefit the NF process in DWW treatment. The electroneutral NF membrane exhibited ultrahigh solute-solute selectivity by minimizing the Donnan effects on ion penetration (K, N, and P ions rejection < 25%) while imposing remarkable size-sieving obstruction against EMPs (rejection ratio > 91%). Moreover, the hydrophilic IM-modifier synergistically led to enhanced water permeance of 9.2 L m-2 h-1 bar-1, reaching a 2-fold higher magnitude than that of the pristine PA membrane, along with excellent antifouling/antibacterial fouling properties. This study may provide a paradigm shift in membrane technology to convert wastewater streams into valuable water and nutrient resources.
Collapse
Affiliation(s)
- Titik Istirokhatun
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan; Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Jl. Prof. Soedarto-Tembalang, Semarang 50275, Indonesia
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ken Kinooka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Pengfei Zhang
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
3
|
Nir O, Oren Y, Musie, Atshba W, Chandra A, Geller Y, Chaudhary M, Monat L, Singh P, Zevenhoven R. Reactive transport in membrane separation modeling: a perspective. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|