1
|
Al Mehrate J, Shaban S, Henni A. A Review of Sulfate Removal from Water Using Polymeric Membranes. MEMBRANES 2025; 15:17. [PMID: 39852258 PMCID: PMC11766897 DOI: 10.3390/membranes15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Access to clean and reliable water has become a critical concern due to the global water crisis. High sulfate levels in drinking water raise health concerns for humans and animals and can cause serious corrosion in industrial systems. Sulfated waters represent a major challenge on the Canadian prairies, leading to many cattle deaths. While reverse osmosis (RO) membranes effectively remove sulfates, they are costly due to high-pressure requirements. Nanofiltration (NF) membranes present a more affordable alternative, outperforming traditional methods like adsorption, desalination, and ion exchange. Developing low-pressure ultrafiltration (UF) and microfiltration (MF) membranes could also reduce costs. This review explores advancements in polymeric materials and membrane technology to enhance sulfate removal, focusing on methods used to reduce fouling and improve permeate flux. Techniques discussed include phase inversion (PI), thin-film composite (TFC), and thin-film nanocomposite (TFN) membranes. The review also highlights recent fabrication methods for pristine and nanomaterial-enhanced membranes, acknowledging both benefits and limitations. Continued innovations in polymer-based membranes are expected to drive further performance and cost-efficiency improvements. This review found that studies in the literature dealt mainly with sulfate concentrations below 2000 mg/L, indicating a need to address higher concentrations in future studies.
Collapse
Affiliation(s)
| | | | - Amr Henni
- Industrial Systems Engineering, Produced Water Treatment Laboratory, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada; (J.A.M.); (S.S.)
| |
Collapse
|
2
|
Li Z, Zhai M, Wang X, Wu X, Gao Z, Chen Z, Song L. Incorporation of Graphene Oxide Quantum Dots in Gradient Layers of Polyethersulphone Nanofiltration Membranes for Nitrate Rejection from Aqueous Solution. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39365920 DOI: 10.1021/acsami.4c12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Graphene oxide quantum dots (GOQDs) have been widely used to prepare nanofiltration membranes due to the merits of excellent dispersity, ultrasmall size, and unique properties related to graphene. In this study, we first prepared the polyethersulphone-based nanofiltration (PES-NF) membrane via an interfacial polymerization process using a piperazine and m-phenylenediamine mixed solution as the aqueous phase. Then GOQDs were incorporated into the top-down gradient structured layers (i.e., ultrathin layer, interlayer, and substrate membrane layer) of the nanofiltration membrane, and subsequently the effect of GOQD addition on the nitrate rejection was evaluated. Compared with the pristine PES-NF membrane without the incorporation of GOQDs, the fabricated NF membrane (GOQD/PES-NF-2) incorporating GOQDs at both the ultrathin layer and interlayer exhibits more remarkable performances (an acceptable permeation flux of 52.2 L m-1 h-1 and excellent nitrate rejection of 96.3% at 0.6 MPa), the permeation flux of this membrane increases by nearly 2.4 times, and its nitrate rejection also shows a slight enhancement (∼7.6%) compared with those of PES-NF. Remarkably, at the operating pressure much lower than that required by reverse osmosis membranes, the GOQD/PES-NF-2 membrane possesses an equivalent monovalent ion rejection to reverse osmosis membranes but a higher permeation flux. Furthermore, the result of a 7 day continuous stability test validates the excellent durability of the GOQD/PES-NF-2 membrane, and its antifouling and chlorine resistance performances also outperform those of the PES-NF membrane.
Collapse
Affiliation(s)
- Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingyu Zhai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xin Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zan Gao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zeying Chen
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Taghipour A, Karami P, Manikantan Sandhya M, Sadrzadeh M. An Innovative Surface Modification Technique for Antifouling Polyamide Nanofiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37197-37211. [PMID: 38959422 DOI: 10.1021/acsami.4c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pooria Karami
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mahesh Manikantan Sandhya
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, Bhopal 462 066, Madhya Pradesh, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
4
|
Liu L, Liu Y, Chen X, Feng S, Wan Y, Lu H, Luo J. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zheng D, Hua D, Cheng X, Pan J, Ibrahim A, Hua H, Zhang P, Cha X, Xu K, Zhan G. Polyamide Composite Membranes for Enhanced
OSN
Performance by Metal Ions Assisted Interfacial Polymerization Method. AIChE J 2022. [DOI: 10.1002/aic.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dayuan Zheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Dan Hua
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Xi Cheng
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Junyang Pan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Abdul‐Rauf Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering and Built Environment Tamale Technical University Education Ridge Avenue, Sagnarigu District Tamale Ghana
| | - Haiming Hua
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Peng Zhang
- College of Energy & School of Energy Research Xiamen University Xiamen Fujian P. R. China
| | - Xingwen Cha
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Kaiji Xu
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University 668 Jimei Avenue Xiamen Fujian P. R. China
| |
Collapse
|
6
|
Preparation of Nanofiltration Membrane Modified with Sawdust-Derived Cellulose Nanocrystals for Removal of Nitrate from Drinking Water. MEMBRANES 2022; 12:membranes12070670. [PMID: 35877873 PMCID: PMC9318514 DOI: 10.3390/membranes12070670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
In this work, cellulose nanocrystals (CNC) derived from sawdust were successfully incorporated into a nanofiltration membrane produced by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC). The characteristics of unmodified and CNC-modified membranes were investigated using scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), zeta potential measurement, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The performance of the membranes in terms of nitrate removal and water flux was investigated using 60 mg/L of potassium nitrate solution in a dead-end test cell. The characteristics of the modified membrane revealed a more nodular structure, higher roughness, increased negative surface charge, and higher hydrophilicity than the pristine membrane, leading to nitrate rejection of 94%. In addition, the membrane gave an average water flux of 7.2 ± 1.8 L/m2/h/bar. This work implies that nanofiltration, a relatively low-pressure process compared to reverse osmosis, can be used for improved nitrate removal from drinking water using an NF membrane modified with sawdust-derived cellulose nanocrystals.
Collapse
|