1
|
Chen C, Liu X, Tian X, Feng J, Liu Y, Song M, Zhu W, Zhang Y. The efficient uptake of uranium by amine-functionalized β-cyclodextrin supported fly ash composite from polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172342. [PMID: 38608905 DOI: 10.1016/j.scitotenv.2024.172342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
A novel polyethyleneimine/polydopamine-functionalized β-cyclodextrin supported fly ash adsorbent (PEI/PDA/β-CD/FA) had been synthesized to uptake uranium from polluted water. At pH = 5.0 and T = 298 K, the uranium uptake efficiency and capacity of PEI/PDA/β-CD/FA reached to 98.7 % and 622.8 mg/g, respectively, which were much higher than those of FA (71.4 % and 206.7 mg/g).The excellent uranium uptake properties of PEI/PDA/β-CD/FA could be explained by three points: (1) using β-CD as a supporting material could effectively avoid the aggregation of FA and improve the hydrophily of FA; (2) the unique cavity structure of β-CD could form chelates with uranyl ions; (3) the formation of PEI/PDA co-deposition coating on FA further enhanced the affinity of FA to UO22+. With the presence of interfering ions, the uptake efficiency of PEI/PDA/β-CD/FA for uranium was still up to 94.5 % after five cycles, indicating the high selectively and recoverability of PEI/PDA/β-CD/FA. In terms of the results of characterizations, uranium was captured by PEI/PDA/β-CD/FA via electrostatic attraction, hydrogen bond, coordination and complexation. To sum up, PEI/PDA/β-CD/FA was expected to be used for actual sewage treatment owing to its excellent uranium uptake efficiency/capacity, selectivity, cycle stability and feasibility of actual application.
Collapse
Affiliation(s)
- Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xuan Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaqi Feng
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yujia Liu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mingjun Song
- The 210(th) Institute of the Sixth Academy of CASIC, Xian 710065, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
2
|
Zhang Y, Huang S, Mei B, Tian X, Jia L, Zhu W. Mussel inspired synthesis of polydopamine/polyethyleneimine-grafted fly ash composite adsorbent for the effective separation of U(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162841. [PMID: 36924963 DOI: 10.1016/j.scitotenv.2023.162841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Polydopamine/polyethyleneimine-grafted fly ash composite (PDA/PEI/FA), an efficient multifunctional adsorbent for U(VI) with excellent separation efficiency (94.5 %) and capacity (422.5 mg/g), was synthesized by grafting PDA and PEI on FA via Mussel inspiration and Michael addition reaction. The introduction of PDA and PEI had brought numerous functional groups with fine affinities to uranium, like catechol, amino and imino, causing good U(VI) separation performances. Langmuir and Pseudo-second-order models were well matched with experimental data, illustrating the U(VI) separation on PDA/PEI/FA was a homogeneous chemical adsorption process. After five cycles, the U(VI) adsorption efficiency for PDA/PEI/FA was still up to 90.2 %, implying that PDA/PEI/FA possessed good stability and reusability. Besides, the good dynamic adsorption performances of PDA/PEI/FA further demonstrated that PDA/PEI/FA was an ideal adsorbent for the practical wastewater treatment. According to the characterization results, U(VI) was absorbed by PAD/PEI/FA through complexation, redox reaction, electrostatic attraction and hydrogen bonding. Given the above, PDA/PEI/FA showed good practical application prospect in U(VI) separation.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
3
|
Pei T, Shi F, Liu C, Lu Y, Lin X, Hou D, Yang S, Li J, Zheng Z, Zheng Y. Bamboo-derived nitrogen-doping magnetic porous hydrochar coactivated by K 2FeO 4 and CaCO 3 for phenol removal: Governing factors and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121871. [PMID: 37225081 DOI: 10.1016/j.envpol.2023.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/09/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.
Collapse
Affiliation(s)
- Tao Pei
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Feng Shi
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Yi Lu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Shunxiong Yang
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Jirong Li
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China
| | - Zhifeng Zheng
- Xiamen Key Laboratory for High-valued Conversion Technology of Agricultural Biomass (Xiamen University), Fujian Provincial Engineering and Research Center of Clean and High-valued Technologies for Biomass, College of Energy, Xiamen University, Xiamen, 361102, PR China
| | - Yunwu Zheng
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forest Biomass Resources, Southwest Forestry University, College of Materials & Chemical Engineering, Southwest Forestry University, Kunming, 650224, PR China.
| |
Collapse
|
4
|
Xiong YS, Li MX, Jia R, Zhou LS, Fan BH, Tang JY, Gai L, Li W, Lu HQ, Li K. Polyethyleneimine/polydopamine-functionalized self-floating microspheres for caramel adsorption: Interactions and phenomenological mass transfer kinetics. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
One-pot hydrothermal synthesis of magnetic N-doped sludge biochar for efficient removal of tetracycline from various environmental waters. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|