1
|
Meng T, Liu X, Peng Y, Lei H, Li Z, Chaleawlert-Umpon S, Dai Y, Zhao K, Li L. Fluorine Incorporation for Enhanced Gas Separation Performance in Porous Organic Polymers: Investigating Reaction Pathways and Pore Structure Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40190-40198. [PMID: 39012769 DOI: 10.1021/acsami.4c06250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The precise control of pore structures in porous organic polymer (POP) materials is of paramount importance in addressing a wide range of challenges associated with gas separation processes. In this study, we present a novel approach to optimize the gas separation performance of POPs through the introduction of fluorine groups and figure out an important factor of reaction decision that whether the AlCl3-catalyzed polymerization is Scholl reaction or Friedel-Crafts alkylation. In the chloroform system, the steric hindrance of function groups could make direct coupling between the benzene rings difficult, which would lead to part solvent knitting (Friedel-Crafts alkylation) instead. The fluorinated polymers show enhanced surface area and pore size characteristics. Notably, the fluorinated polymers exhibited significantly improved adsorption and separation performance for SF6, as evidenced by an ideal adsorbed solution theory selectivity (SF6/N2, v: v = 50:50, 273 K) increase of 75.0, 668.8, and 502.8% compared to the nonfluorinated POPs. These findings highlight the potential of fluorination as a strategy for tailoring the properties of POP materials for advanced gas separation applications.
Collapse
Affiliation(s)
- Timur Meng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Xianhao Liu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yuyue Peng
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Hongliang Lei
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Zhiyi Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Saowaluk Chaleawlert-Umpon
- National Nanotechnology Center, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Yutong Dai
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Kaige Zhao
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lina Li
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
2
|
Li YP, Ni JJ, Zhang XJ, Zhang XL, Wen W, Sui ZY, Xu XF. Pore Environmental Modification by Amino Groups in Robust Microporous MOFs for SF 6 Capturing and SF 6/N 2 Separation. Inorg Chem 2024; 63:13568-13575. [PMID: 38973105 DOI: 10.1021/acs.inorgchem.4c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Capturing and separating the greenhouse gas SF6 from nitrogen N2 have significant greenhouse mitigation potential and economic benefits. We used a pore engineering strategy to manipulate the pore environment of the metal-organic framework (MOF) by incorporating organic functional groups (-NH2). This resulted in an enhanced adsorption of SF6 and separation of the SF6/N2 mixture in the MOF. The introduction of amino (-NH2) groups into YTU-29 resulted in a reduction of the Brunauer-Emmett-Teller surface but an increase in interactions with SF6 within the confined pores. Water-stable YTU-29-NH2 showed a significantly higher SF6 uptake (95.5 cm3/g) than YTU-29 (77.4 cm3/g). The results of the breakthrough experiments show that YTU-29-NH2 has a significantly improved separation performance for SF6/N2 mixtures, with a high SF6 capture of 0.88 mmol/g compared to 0.56 mmol/g by YTU-29. This improvement is due to the suitable pore confinement and accessible -NH2 groups on pore surfaces. Considering its excellent regeneration ability and cycling performance, ultrastable YTU-29-NH2 demonstrates great potential for SF6 capturing and SF6/N2 separation.
Collapse
Affiliation(s)
- Yong-Peng Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jing-Jing Ni
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Jie Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Long Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wen Wen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Zhu-Yin Sui
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiu-Feng Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Zhang X, Zhao YL, Li XY, Bai X, Chen Q, Li JR. Recovery of High-Purity SF 6 from Humid SF 6/N 2 Mixture within a Co(II)-Pyrazolate Framework. J Am Chem Soc 2024; 146:19303-19309. [PMID: 38970779 DOI: 10.1021/jacs.4c05075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Sulfur hexafluoride (SF6) is extensively employed in the power industry. However, its emissions significantly contribute to the greenhouse effect. The direct recovery of high purity SF6 from industrial waste gases would benefit its sustainable use, yet this represents a considerable challenge. Herein, we report the enrichment of SF6 from SF6/N2 mixtures via adsorptive separation in a stable Co(II)-pyrazolate MOF BUT-53 (BUT: Beijing University of Technology), which features dynamic molecular traps. BUT-53 exhibits an excellent SF6 adsorption uptake of 2.82 mmol/g at 0.1 bar and 298 K, as well as an unprecedented SF6/N2 (10:90) selectivity of 2485. Besides, the remarkable SF6/N2 selectivity of BUT-53 enables recovery of high purity (>99.9%) SF6 from a low concentration (10%) mixture through a breakthrough experiment. The excellent SF6/N2 separation efficiency was also well maintained under humid conditions (RH = 90%) over multiple cycles. Molecular simulation, single-crystal diffraction, and adsorption kinetics studies elucidate the associated adsorption mechanism and water tolerance.
Collapse
Affiliation(s)
- Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang-Yu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xuefeng Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiancheng Chen
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
4
|
Xin R, Wang C, Zhang Y, Peng R, Li R, Wang J, Mao Y, Zhu X, Zhu W, Kim M, Nam HN, Yamauchi Y. Efficient Removal of Greenhouse Gases: Machine Learning-Assisted Exploration of Metal-Organic Framework Space. ACS NANO 2024. [PMID: 38951518 DOI: 10.1021/acsnano.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Global warming is a crisis that humanity must face together. With greenhouse gases (GHGs) as the main factor causing global warming, the adoption of relevant processes to eliminate them is essential. With the advantages of high specific surface area, large pore volume, and tunable synthesis, metal-organic frameworks (MOFs) have attracted much attention in GHG storage, adsorption, separation, and catalysis. However, as the pool of MOFs expands rapidly with new syntheses and discoveries, finding a suitable MOF for a particular application is highly challenging. In this regard, high-throughput computational screening is considered the most effective research method for screening a large number of materials to discover high-performance target MOFs. Typically, high-throughput computational screening generates voluminous and multidimensional data, which is well suited for machine learning (ML) training to improve the screening efficiency and explore the relationships between the multidimensional data in depth. This Review summarizes the general process and common methods for using ML to screen MOFs in the field of GHG removal. It also addresses the challenges faced by ML in exploring the MOF space and potential directions for the future development of ML for MOF screening. This aims to enhance the understanding of the integration of ML and MOFs in various fields and broaden the application and development ideas of MOFs.
Collapse
Affiliation(s)
- Ruiqi Xin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yingchao Zhang
- School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Rui Li
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Minjun Kim
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Gyeonggi-do, 17104, South Korea
| |
Collapse
|
5
|
Miao X, Sui J, Weng S, Zhang J, Zhao H, Wei Y, Shi J, Zhao Y, Cai J, Xiao L, Hou L. Construction of Hierarchical Porous UiO-66-Br 2@PS/DVB-Packed Columns by High Internal Phase Emulsion Strategy for Enhanced Separation of CF 4/N 2 and SF 6/N 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669622 DOI: 10.1021/acsami.4c02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recovery and separation of anthropogenic emissions of electronic specialty gases (F-gases, such as CF4 and SF6) from the semiconductor sector are of critical importance. In this work, the hierarchical porous UiO-66-Br2@PS/DVB-packed column was constructed by a high internal phase emulsions strategy. UiO-66-Br2@PS/DVB exhibits a superior selectivity of CF4/N2 (2.67) and SF6/N2 (3.34) predicted by the IAST due to the diffusion limitation in the micropore and the gas-framework affinity. Especially, UiO-66-Br2@PS/DVB showed significant CF4 and SF6 retention and enabled the successful separation of CF4/N2 and SF6/N2 with a resolution of 2.37 and 8.89, respectively, when used as a packed column in gas chromatography. Compared with the Porapak Q column, the HETP of the UiO-66-Br2@PS/DVB-packed column decreased and showed good reproducibility. This research not only offers a convenient method for fabricating a hierarchical porous MOF-packed column but also showcases the prospective utilization of MOFs for the separation of the F-gas/N2 mixture.
Collapse
Affiliation(s)
- Xiaoyu Miao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jincheng Sui
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Sen Weng
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jian Zhang
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Hao Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yifeng Wei
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Junjie Shi
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
6
|
Wang H, Shi L, Xiong Z, Ma S, Cao H, Cai S, Qiao Z, Pan J, Chen Z. A two-dimensional metal-organic framework assembled from scandium-based cages for the selective capture of sulfur hexafluoride. Chem Commun (Camb) 2024; 60:2397-2400. [PMID: 38323363 DOI: 10.1039/d3cc05087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Herein, we report the synthesis of a two-dimensional metal-organic framework (MOF), assembled from octahedral metal-organic cages featuring phenanthroline-based carboxylate linkers and μ3-oxo-centered trinuclear Sc(III) inorganic building blocks. We study the performance of this MOF towards the capture of sulfur hexafluoride (SF6). On account of its structural features and porous nature, this MOF displays an SF6 uptake capacity of 0.92 mmol g-1 at 0.1 bar and an isosteric heat of adsorption of about 30.7 kJ mol-1 for SF6, illustrating its potential application for the selective capture of SF6 from N2. In addition, we study the adsorptive binding mechanism of SF6 and N2 inside this MOF via molecular simulations.
Collapse
Affiliation(s)
- Hao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Si Ma
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Honghao Cao
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| | - Shijia Cai
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 5100006, P. R. China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 5100006, P. R. China.
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.
| |
Collapse
|
7
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
8
|
Nickel-based metal–organic framework for efficient capture of CF4 with a high CF4/N2 selectivity. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Liu HR, Wang SM, Dong YL, Zheng ST, Ni S, Xu J, Yang QY. Control of Pore Environment in Nickel-Based Metal-Organic Frameworks for SF6/N2 Separation. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Ezure R, Arai Y, Nakano D, Komatsu H, Tajima H. Novel SF6 gas concentration method using hydrate-based gas uptake and sweating process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Effective removal of nitroimidazole antibiotics in aqueous solution by an aluminum-based metal-organic framework: Performance and mechanistic studies. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|