1
|
Fu C, Tian G, He S, Yao L, Guo Z. Hydrogel Coated Mesh with Controlled Flux for Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37757-37769. [PMID: 39001806 DOI: 10.1021/acsami.4c08781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Superwetting surfaces are often applied in oil/water separation. Hydrogels have been widely prepared as superhydrophilic/underwater superoleophobic materials for oil/water separation since they are naturally hydrophilic. Hydrogels usually need to be combined with porous substrates such as stainless steel mesh (SSM) due to their poor mechanical properties. However, it is usually inevitable that the pores of the substrate are clogged during the actual preparation process, leading to a significant decrease in the flux, which limits its effective application. In this study, acrylic acid (AA), chitosan (CS) and modified silica were utilized to form a layer of dual-network PAA/CS@SiO2 hydrogel by photopolymerization on SSM, followed by a simple and novel ultrasonic-assisted pore-making method to generate numerous pores in situ on the surface of the hydrogel-coated mesh, which led to an increase in water flux from 0 to 70,000 L m-2 h-1 without decreasing the separation efficiency. After 100 separations of a mixture of n-hexane and water, the flux was still higher than 50,000 L m-2 h-1 with a separation efficiency above 99%, which is superior to most of hydrogel-coated meshes reported so far. Moreover, the prepared PAA/CS@SiO2 hydrogel-coated mesh also has good environmental stability, low swelling, and self-cleaning properties. We believe that the strategy of this study will provide a simple new perspective when hydrogels block the substrate pores, resulting in low water flux.
Collapse
Affiliation(s)
- Changhui Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Guangyi Tian
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Shiping He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Li Yao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
2
|
Xu X, Kao H, Yu X, Zhou J, Hou P, Xu G, Chen J. Green Fabrication of Superhydrophilic/Underwater Superoleophobic Composite Membrane for High-Efficiency Oil/Water Separation in Harsh Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11661-11669. [PMID: 38781140 DOI: 10.1021/acs.langmuir.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Due to the high oil spill incidence and industrial wastewater discharge including oil and emulsified oil, designing and synthesizing oil-water separation materials which can maintain stability under harsh environmental conditions with high separation efficiencies remains a great challenge. The present work developed an easy, green, cost-effective, and easily scaled-up approach for fabricating cellulose-based membranes. First, we coated polydopamine (PDA) onto fibers of filter membrane (FM). Then, the PDA-FM membrane was immersed into the mixed solution of poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) and further thermally cross-linked at 150 °C to create a superhydrophilic/underwater superoleophobic membrane (PVA/PAA@PDA-FM) to separate oil/water mixtures. The simple thermally cross-linking process promotes multiple covalent chemical bonds generation between cellulose filter membrane, PAA, PDA, and PVA, endowing membranes with excellent stability and resistance to acidity, alkalinity, and salinity. The PVA/PAA@PDA-FM membrane not only demonstrates great separation performance (>99.8%) and great flux (>1000 L m-2 h-1) in oil-water immiscible mixtures but also maintains high separation efficiency under conditions of high acidity, alkalinity, and salinity. Additionally, the PVA/PAA@PDA-FM membrane exhibits excellent separation capacity in oil-water emulsions, which can maintain the >99.6% separation efficiency even after 40 cycles in harsh environments, showing outstanding reusability. Thus, due to the multiple cross-linked networks in the membrane, the excellent performance makes the PVA/PAA@PDA-FM membrane a good application prospect in water purification and oily wastewater treatment.
Collapse
Affiliation(s)
- Xiangpeng Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R. China
| | - Hongming Kao
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Xinran Yu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jingmiao Zhou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Panchao Hou
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Gonghao Xu
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| | - Jing Chen
- Department of Chemistry, School of Science, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area Campus, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Li B, Wang C, Tian X, Luo Y, Cao X, Luo Z. A facile method to fabricate supramolecular polyurea hydrogel coated mesh with long-term stable underwater superoleophobicity for oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|