1
|
Ding C, Lu Y, Xiang M, Wu F, Chen P, Gan W, Guo J, Li J, Ling Q, Zhao Z, Chen L, Zhang M, Sun Z. Internal electric field-assisted copper ions chelated polydopamine/titanium dioxide nano-thin film heterojunctions activate peroxymonosulfate under visible light to catalyze degradation of gatifloxacin: Theoretical calculations and biotoxicity analysis. J Colloid Interface Sci 2023; 646:275-289. [PMID: 37196501 DOI: 10.1016/j.jcis.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
The combination of photocatalysis and peroxymonosulfate (PMS) activation is considered effective in treating organic pollutants in water; however, the photocatalysts currently used to activate PMS are primarily in powder form, which cause secondary contamination because they are difficult to recycle. In this study, copper-ion-chelated polydopamine/titanium dioxide (Cu-PDA/TiO2) nanofilm were prepared for PMS activation on fluorine-doped tin oxide substrates using hydrothermal and in-situ self-polymerization methods. The results showed that Cu-PDA/TiO2 + PMS + Vis degraded 94.8% of gatifloxacin (GAT) within 60 min, and the reaction rate constant reached 4.928 × 10-2 min-1, which was 6.25 and 4.04 folds higher than that of TiO2 + PMS + Vis (0.789 × 10-2 min-1) and PDA/TiO2 + PMS + Vis (1.219 × 10-2 min-1), respectively. The Cu-PDA/TiO2 nanofilm is easily recyclable and activates PMS to degrade GAT with no inferior performance, unlike the powder-based photocatalysts, and simultaneously maintains outstanding stability, which is highly suitable for applications in real aqueous environments. Biotoxicity experiments were conducted using E. coli, S. aureus, and mung bean sprouts as experimental subjects, and the results showed that the Cu-PDA/TiO2 + PMS + Vis system had excellent detoxification ability. In addition, a detailed investigation of the formation mechanism of step-scheme (S-scheme) Cu-PDA/TiO2 nanofilm heterojunctions was conducted by density functional theory (DFT) calculations and in-situ X-ray photoelectron spectroscopy (XPS). Finally, a specific process for activating PMS to degrade GAT was proposed, which provides a novel photocatalysts for practical applications in aqueous pollution.
Collapse
Affiliation(s)
- Chunsheng Ding
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Yuqing Lu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ming Xiang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Fen Wu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China
| | - Peng Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Wei Gan
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Jun Guo
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Jianrou Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Qi Ling
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ziwei Zhao
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life sciences, Anhui University, Hefei, Anhui 230601, PR China.
| | - Miao Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| | - Zhaoqi Sun
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
2
|
Oshima M, Moriwaki H. Photoreduction of Cr(VI) by TiO 2 adsorbed gold nanoparticles and perylene as a novel organic-inorganic hybrid photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69122-69134. [PMID: 37129822 DOI: 10.1007/s11356-023-27283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The photoreduction of hexavalent chromium (Cr(VI)) using TiO2 adsorbed gold nanoparticles and perylene (Au/Pe/TiO2) as a novel organic-inorganic hybrid photocatalyst has been studied. The irradiation by a Xe lamp of a Cr (VI) aqueous solution (0.1 mM) with the Au/Pe/TiO2 powder resulted in the reduction of the Cr(VI). The rate of Cr(VI) reduction reached 98.3% by the irradiation for 60 min. The reaction rate constant using Au/Pe/TiO2 (0.0545 min-1) was higher than that of TiO2 (0.0218 min-1), Pe/TiO2 (0.0303 min-1), or Au/TiO2 (0.0393 min-1). Gold nanoparticles and perylene synergistically accelerated the TiO2 photocatalytic reaction. This result is due to the Z-scheme electron transfer between Pe and TiO2 and the suppression of charge recombination by the gold nanoparticles. The irradiation of sunlight also led to the photocatalytic reduction of the Cr(VI) by Au/Pe/TiO2. In addition, successive reduction of the Cr(VI) was achieved by using a column packed with the Au/Pe/TiO2 powder immobilized by calcium alginate gel.
Collapse
Affiliation(s)
- Mahiro Oshima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan
| | - Hiroshi Moriwaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan.
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan.
| |
Collapse
|
3
|
Dang G, Jia Y, Guo L, Yang Y, Zhi J, Li X. Tannin-functionalized Mn3O4 as support for FeNiB alloy to construct sono-Fenton-like reaction for the degradation of antibiotic pollutants in water. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|