1
|
Zhang X, Yu F, Ma J. High-Level Disordered Metal-Organic Frameworks Synthesized by Interference-Oriented Attachment for Electrochemical Anion Sieve. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310702. [PMID: 38660707 DOI: 10.1002/smll.202310702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/08/2024] [Indexed: 04/26/2024]
Abstract
Disordered MOFs seamlessly amalgamate the robust stability and pore tunability inherent in crystalline MOFs with the advantages derived from abundant defects and active sites present in amorphous structures. This study pioneers the use of the interference-oriented attachment (IOA) mechanism to meticulously craft the morphology and crystal growth of MIL-101(Cr) (Cr-MOF), resulting in the successful synthesis of a high-level disordered Cr-MOF boasting an enhanced array of active sites and exceptional electrochemical properties. The correlation between disordered structures and the electrochemical properties of MOFs are elucidated using the lattice distortion index and fractal dimension. The high-level disordered MOF electrode showcases a remarkable fluoride sieving effect, outperforming conventional fluoride removal materials with a remarkable fluoride adsorption capacity of 41.04 mgNaF gelectrodes -1. First-principles calculations, in conjunction with relevant experiments, provided further validation that the disordered structure significantly enhances the defluorination performance of the material. This study introduces a novel approach for the direct bottom-up synthesis of high-level disordered MOFs, showcasing their potential for applications in electrochemical water treatment.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| |
Collapse
|
2
|
Li J, Wang R, Han L, Wang T, El-Bahy ZM, Mai Y, Wang C, Yamauchi Y, Xu X. Enhanced redox kinetics of Prussian blue analogues for superior electrochemical deionization performance. Chem Sci 2024; 15:11814-11824. [PMID: 39092121 PMCID: PMC11290438 DOI: 10.1039/d4sc00686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Prussian blue analogues (PBAs), representing the typical faradaic electrode materials for efficient capacitive deionization (CDI) due to their open architecture and high capacity, have been plagued by kinetics issues, leading to insufficient utilization of active sites and poor structure stability. Herein, to address the conflict issue between desalination capacity and stability due to mismatched ionic and electronic kinetics for the PBA-based electrodes, a rational design, including Mn substitution and polypyrrole (ppy) connection, has been proposed for the nickel hexacyanoferrate (Mn-NiHCF/ppy), serving as a model case. Particularly, the theoretical calculation manifests the reduced bandgap and energy barrier for ionic diffusion after Mn substitution, combined with the increased electronic conductivity and integrity through ppy connecting, resulting in enhanced redox kinetics and boosted desalination performance. Specifically, the optimized Mn-NiHCF/ppy demonstrates a remarkable desalination capacity of 51.8 mg g-1 at 1.2 V, accompanied by a high charge efficiency of 81%, and excellent cycling stability without obvious degradation up to 50 cycles, outperforming other related materials. Overall, our concept shown herein provides insights into the design of advanced faradaic electrode materials for high-performance CDI.
Collapse
Affiliation(s)
- Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Ruoxing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Lanlan Han
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Zeinhom M El-Bahy
- Chemistry Department, Faculty of Science, Al-Azhar University Nasr City Cairo Egypt
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 Zhejiang China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology Huaian 223003 P. R. China
| |
Collapse
|
3
|
Zhang H, Wan K, Yan J, Li Q, Guo Y, Huang L, Arulmani SRB, Luo J. The function of doping nitrogen on removing fluoride with decomposing La-MOF-NH 2: Density functional theory calculation and experiments. J Environ Sci (China) 2024; 135:118-129. [PMID: 37778789 DOI: 10.1016/j.jes.2023.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 10/03/2023]
Abstract
Fluoride is an important pollutant in wastewater, and adsorption is an effective way to remove fluoride. Because nitrogen plays an important role in adsorbent materials, computational models were developed to understand the changes in work function resulting from nitrogen doping. La-N-C-800°C, was prepared by pyrolyzing La-MOF-NH2 to verify the influence on the performance of removing fluoride by electrosorption. Material and electrochemical performance tests were performed to characterize La-N-C-800°C. Adsorption kinetics, adsorption thermodynamics, initial concentrations, pH, and ions competition were investigated using La-N-C-800°C for fluoride removal. In addition, density functional theory was applied to evaluate the function of nitrogen. When nitrogen atoms were added, the density of states, partial density of states, populations, and different orbits of charge were calculated to discover deep changes. Nitrogen strengthened the carbon structure and La2O3 structure to remove fluoride. In addition, nitrogen can also act as an adsorption site in the carbon structure. These results provide design ideas for improving the performance of adsorbent materials by doping elements.
Collapse
Affiliation(s)
- Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Kuilin Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yufang Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | | | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Zeng Z, Li Q, Yan J, Huang L, Arulmani SRB, Zhang H, Xie S, Sio W. The model and mechanism of adsorptive technologies for wastewater containing fluoride: A review. CHEMOSPHERE 2023; 340:139808. [PMID: 37591373 DOI: 10.1016/j.chemosphere.2023.139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
With the continuous development of society, industrialization, and human activities have been producing more and more pollutants. Fluoride discharge is one of the main causes of water pollution. This review summarizes various commonly used and effective fluoride removal technologies, including ion exchange technology, electrochemical technology, coagulation technology, membrane treatment, and adsorption technology, and points out the outstanding advantages of adsorption technology. Various commonly used fluoride removal techniques as well as typical adsorbent materials have been discussed in published papers, however, the relationship between different adsorbent materials and adsorption models has rarely been explored, therefore, this paper categorizes and summarizes the various models involved in static adsorption, dynamic adsorption, and electrosorption fluoride removal processes, such as pseudo-first-order and pseudo-second-order kinetic models, Langmuir and Freundlich isotherm models, Thomas and Clark dynamic adsorption models, including the mathematical equations of the corresponding models and the significance of the models are also comprehensively summarized. Furthermore, this comprehensive discussion delves into the fundamental adsorption mechanisms, quantification of maximum adsorption capacity, evaluation of resistance to anion interference, and assessment of adsorption regeneration performance exhibited by diverse adsorption materials. The selection of the best adsorption model not only predicts the adsorption performance of the adsorbent but also provides a better description and understanding of the details of each part of the adsorption process, which facilitates the adjustment of experimental conditions to optimize the adsorption process. This review may provide some guidance for the development of more cost-effective adsorbent materials and adsorption processes in the future.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Samuel Raj Babu Arulmani
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, 35000, Rennes, France
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
| | - Shaojian Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenghong Sio
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
5
|
Wang Z, Gao M, Peng J, Miao L, Chen W, Ao T. Nanoarchitectonics of heteroatom-doped hierarchical porous carbon derived from carboxymethyl cellulose carbon aerogel and metal-organic framework for capacitive deionization. Int J Biol Macromol 2023; 241:124596. [PMID: 37116842 DOI: 10.1016/j.ijbiomac.2023.124596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Capacitive deionization (CDI) using porous materials offers a sustainable solution for providing affordable freshwater, but the low salt adsorption rate of benchmark carbon materials significantly limit the practical implementation. Herein, we utilized carboxymethyl cellulose sodium (CMC) as the carbon skeleton to produce a composite carbon aerogel loaded with ZIF-8 (ZIF-8/CMC-CA). The presence of ZIF-8 nanoparticles improved the pore structure of the material and provides a certain pseudo capacitance by introducing N. Compared with ZIF-8 derived carbons (ZIF-8-C), the CMC provided a good three-dimensional structure for the dispersion of ZIF-8 nanoparticles, reduced the agglomeration of particles. Furthermore, numerous carboxyl and hydroxyl groups on CMC enhanced the hydrophilicity of materials. Due to the interconnected structure, ZIF-8/CMC-CA exhibited excellent conductivity, a high specific surface area, and offered suitable channels for the rapid entry and exit of ions. In a three-electrode system, the total specific capacitance of the ZIF-8/CMC-CA electrode was 357.14 F g-1. The adsorption rate of ZIF-8/CMC-CA was 2.02 mg g-1 min-1 in a 500 mg L-1 NaCl solution. This study may provide new insight for modifying and fabricating electrode materials for practical CDI applications.
Collapse
Affiliation(s)
- Zhen Wang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China
| | - Ming Gao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jie Peng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Luwei Miao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Yu F, Zhang X, Liu P, Chen B, Ma J. "Blockchain-Like" MIL-101(Cr)/Carbon Black Electrodes for Unprecedented Defluorination by Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205619. [PMID: 36538724 DOI: 10.1002/smll.202205619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOF) have attracted extensive attention due to their ultra-high specific surface area and tunable structure, the mechanism of direct utilization for capacitive deionization (CDI) defluorination remains undefined. Here, MIL-101(Cr) with ultra-high specific surface area, high water stability, and open metal sites (OMSs) is prepared by a hydrothermal method for defluorination of CDI. Carbon black is used as a "chain" to connect F-stored in the holes of MIL-101(Cr) (Cr-MOF)as "blocks" to enhance the conductivity and ion storage capacity of MIL-101(Cr)/carbon black electrodes (Cr-MOF electrodes). This simple construction method avoids the process complexity of in situ synthesis and performs better. These easily constructed "blockchain-like" Cr-MOF electrodes exhibit excellent defluorination capacity (39.84 mgNaF gelectrodes -1 ), low energy consumption (1.2 kWh kgNaF -1 ), and good stability. The coupling of the electrochemical redox reaction of Cr3+ /Cr4+ with confined water is investigated using in situ and ex situ analysis methods combined with density functional theory (DFT), resulting in an unprecedented defluorination mechanism for Cr-MOF electrodes. This study opens up new ideas for the application of MOF in CDI, clarifies the removal mechanism of MOF, and lays a foundation for further promoting the application of raw materials with poor conductivity in the field of CDI.
Collapse
Affiliation(s)
- Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Xiaochen Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai, 201306, P. R. China
| | - Peng Liu
- Biolin (Shanghai) Trading Company Ltd., Pudong New District, Shanghai, 201203, P. R. China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
7
|
Kang H, Zhang D, Chen X, Zhao H, Yang D, Li Y, Bao M, Wang Z. Preparation of MOF/polypyrrole and flower-like MnO 2 electrodes by electrodeposition: High-performance materials for hybrid capacitive deionization defluorination. WATER RESEARCH 2023; 229:119441. [PMID: 36470045 DOI: 10.1016/j.watres.2022.119441] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Fluorine pollution has become a global public health problem due to its adverse health effects. Adsorption is the primary method for removing fluoride from drinking water. However, the adsorption method has disadvantages such as difficulty in recovering the adsorbent, and the need to add additional chemicals for regeneration, thereby causing secondary pollution, which limits further industrial applications. Capacitive deionization (CDI), as an emerging water treatment technology, has attracted widespread attention due to its advantages of simple operation, low energy consumption and less environmental impact. In this study, a polypyrrole (PPy) film was prepared on a graphite substrate by electrodeposition, and then metal-organic framework Ce/Zn-BDC-NH2 (CZBN) was deposited on the PPy film by electrophoretic deposition to obtain CZBN/PPy electrode was obtained. The CZBN/PPy anode was then coupled with the MnO2 cathode for capacitive removal of fluoride in a CDI cell. Both CZBN/PPy and MnO2 electrodes exhibit pseudocapacitive behavior, which can selectively and reversibly intercalate F- (CZBN/PPy) and Na+ (MnO2) ions. As expected, the CZBN/PPy-MnO2 system exhibits excellent fluorine removal performance. In 1.2 V, 100 mg/L F- solution, the F- removal capacity can reach 55.12 mg/g. It has high F- selectivity in the presence of some common anions, and can maintain high F- removal ability even after five adsorption regeneration processes. The mechanism of F- removal was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). F- was mainly removed by electrostatic interaction and ion exchange with hydroxyl. The excellent defluorination performance of the CZBN/PPy-MnO2 system makes it have good practical application prospects.
Collapse
Affiliation(s)
- Hu Kang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Dan Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Haosen Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Dongdong Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, P.R. China; College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P.R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P.R. China.
| |
Collapse
|
8
|
Qing J, Zhang G, Zeng L, Guan W, Cao Z, Li Q, Wang M, Chen Y, Wu S. Deep fluoride removal from the sulfate leaching solution of spent LIBs by complexation extraction with Al3+ loaded solvent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|