1
|
Brillas E, Peralta-Hernández JM. Antibiotic removal from synthetic and real aqueous matrices by peroxymonosulfate-based advanced oxidation processes. A review of recent development. CHEMOSPHERE 2024; 351:141153. [PMID: 38219991 DOI: 10.1016/j.chemosphere.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada s/n, Pueblito, United States.
| |
Collapse
|
2
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Wang X, Li Y, Qin J, Pan P, Shao T, Long X, Jiang D. Degradation of Ciprofloxacin in Water by Magnetic-Graphene-Oxide-Activated Peroxymonosulfate. TOXICS 2023; 11:1016. [PMID: 38133416 PMCID: PMC10747872 DOI: 10.3390/toxics11121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are extensively applied in the pharmaceutical industry, while posing a tremendous hazard to the ecosystem and human health. In this study, the degradation performance of ciprofloxacin (CIP), one of the typical contaminants of antibiotics, in an oxidation system of peroxymonosulfate (PMS) activated by magnetic graphene oxide (MGO) was investigated. The effects of the MGO dosage, PMS concentration and pH on the degradation of CIP were evaluated, and under the optimal treatment conditions, the CIP degradation rate was up to 96.5% with a TOC removal rate of 63.4%. A kinetic model of pseudo-secondary adsorption indicated that it involves an adsorption process with progressively intensified chemical reactions. Furthermore, the MGO exhibited excellent recyclability and stability, maintaining strong catalytic activity after three regenerative cycles, with a CIP removal rate of 87.0%. EPR and LC-MS experiments suggested that •OH and SO4-• generated in the MGO/PMS system served as the main reactants contributing to the decomposition of the CIP, whereby the CIP molecule was effectively destroyed to produce other organic intermediates. Results of this study indicate that organic pollutants in the aqueous environment can be effectively removed in the MGO/PMS system, in which MGO has excellent catalytic activity and stabilization for being recycled to avoid secondary pollution, with definite research value and application prospects in the field of water treatment.
Collapse
Affiliation(s)
- Xiaoping Wang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Yulan Li
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Jiayuan Qin
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Ping Pan
- Chongqing Ecological Environment Monitoring Center, No. 252, Qishan Road, Ranjiaba, Yubei District, Chongqing 401147, China;
| | - Tianqing Shao
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Xue Long
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| | - Debin Jiang
- Chongqing Key Laboratory of Catalysis and Environmental New Material, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China; (Y.L.); (J.Q.); (T.S.); (X.L.); (D.J.)
| |
Collapse
|
4
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
Zhang Z, Xiao S, Meng X, Yu S. Research progress of MOF-based membrane reactor coupled with AOP technology for organic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104958-104975. [PMID: 37723390 DOI: 10.1007/s11356-023-29852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
MOF-based catalytic membrane reactor (MCMR), which can simultaneously achieve membrane separation and chemical catalytic degradation in an integrated system, is a cutting-edge technology for effective treatment of organic pollutants in water. The coupling of MCMR and advanced oxidation process (AOP) not only significantly improves the pollutant removal efficiency but also inhibits the membrane pollution through self-cleaning effect, thus improving the stability of MCMR. This paper reviews different MCMR systems combined with photocatalysis, Fenton oxidation, and persulfate activation, elucidates the reaction mechanism, discusses key issues to improve system effectiveness, and suggests future challenges and research directions.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shujuan Xiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xianguang Meng
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shouwu Yu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
6
|
Kumari M, Pulimi M. Sulfate Radical-Based Degradation of Organic Pollutants: A Review on Application of Metal-Organic Frameworks as Catalysts. ACS OMEGA 2023; 8:34262-34280. [PMID: 37779959 PMCID: PMC10536895 DOI: 10.1021/acsomega.3c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
The degradation of organic pollutants present in domestic and industrial effluents is a matter of concern because of their high persistence and ecotoxicity. Recently, advanced oxidation processes (AOPs) are being emphasized for organic pollutant removal from effluents, as they have shown higher degradation efficiencies when compared to conventional activated sludge processes. Sulfate radical-based methods are some of the AOPs, mainly carried out using persulfate (PS) and peroxymonosulfate (PMS), which have gained attention due to the ease of sulfate radical generation and the effective degradation of organic molecules. PMS is gaining more popularity because of its high reactivity and ability to generate excess sulfate radicals. PMS has been the major focus; therefore, its mechanism has been explained, and limitations have been elaborated. The involvement of metal-organic frameworks for PMS/PS activation applied to organic pollutant removal and recent advances in the application of biochar and hydrogel-assisted metal-organic frameworks have been discussed.
Collapse
Affiliation(s)
- Madhu Kumari
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
7
|
Wang Y, Ge Y, Wang R, Liu Z, Yin Z, Yang Z, Liu F, Yang W. MOF-Derived Ni/ZIF-8/ZnO Arrays on Carbon Fiber Cloth for Efficient Adsorption-Catalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303928. [PMID: 37625020 DOI: 10.1002/smll.202303928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Indexed: 08/27/2023]
Abstract
The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF-8/ZnO nanoreactor is constructed. The Ni/ZIF-8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption-PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF-8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Ge
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruoding Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zifan Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
8
|
Koushkbaghi S, Kermani HA, Jamshidifard S, Faramarzi H, Khosravi M, Abadi PGS, Jazi FS, Irani M. Metal organic framework-loaded polyethersulfone/polyacrylonitrile photocatalytic nanofibrous membranes under visible light irradiation for the removal of Cr(vi) and phenol from water. RSC Adv 2023; 13:12731-12741. [PMID: 37114028 PMCID: PMC10126744 DOI: 10.1039/d3ra00959a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
In this work, various amounts of the UiO-66-NH2 and UiO-66-NH2/TiO2 MOFs have been loaded into polyacrylonitrile (PAN) nanofibers supported on polyethersulfone (PES). The visible light irradiation was used to investigate the influence of pH (2-10), initial concentration (10-500 mg L-1), and time (5-240 min) on the removal efficiency of phenol and Cr(vi) in the presence of MOFs. The reaction time: 120 min, catalyst dosage: 0.5 g L-1, pH: 2 for Cr(vi) ions and pH: 3 for phenol molecules were optimum to degrade phenol and to reduce Cr(vi) ions. The characterization of the produced samples was performed using X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy, and Brunauer-Emmett-Teller analysis. The capability of synthesized photocatalytic membranes was investigated for the removal of phenol and Cr(vi) ions from water. The water flux, Cr(vi) and phenol solutions fluxes and their rejection percentages were evaluated under pressure of 2 bar in the presence of visible light irradiation and in the dark. The best performance of the synthesized nanofibers was obtained for UiO-66-NH2/TiO2 MOF 5 wt% loaded-PES/PAN nanofibrous membranes at temperature of 25 °C and pH of 3. Results demonstrated the high capability of MOFs-loaded nanofibrous membranes for the removal of various contaminants such as Cr(vi) ions and phenol molecules from water.
Collapse
Affiliation(s)
| | | | - Sana Jamshidifard
- Faculty of Chemical Engineering, Iran University of Science & Technology Tehran Iran
| | - Hamed Faramarzi
- Chemical Engineering Departments, Razi University Kermanshah Iran
| | - Mina Khosravi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran Tehran Iran
| | | | | | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences Karaj Iran
| |
Collapse
|
9
|
A green hydrothermal synthesis of polyacrylonitrile@carbon/MIL-101(Fe) composite nanofiber membrane for efficient selective removal of tetracycline. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Yi J, Wan J, Ye G, Wang Y, Ma Y, Yan Z, Zeng C. Targeted degradation of refractory organic pollutants in wastewater based on molecularly imprinted catalytic materials: adsorption process and degradation mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|