1
|
Zhao J, Sun M, Liu W, Chen H, Huang X, Gao Y, Teng H, Li Z. In-situ sonochemical formation of N-graphyne modulated porous g-C 3N 4 for boosted photocatalysis degradation of pollutants and nitrogen fixation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124629. [PMID: 38865891 DOI: 10.1016/j.saa.2024.124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Herein, Nitrogen-doped graphyne/porous g-C3N4 composites are firstly in-situ synthesized via the ultrasound vibration of CaC2, triazine, and porous g-C3N4 in absolute ethanol. A variety of characterizations are performed to investigate the morphology, microstructure, composition, and electrical/optical features of the obtained composites, such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and so forth. It is found that N-doped graphyne with flexible folds lamellar structure is intimately attached to flake g-C3N4 in the as-prepared composites. An enlargement of 1.68 and 1.44 folds for the photocatalytic degradation of levofloxacin, rhodamine B, Methylene blue, and Tetracycline is realized by N-doped graphyne/g-C3N4 in comparison with that of pristine g-C3N4, respectively. In addition, the highest NH3 production rate attains 1.71 mmol⋅gcat-1⋅h-1 for N-doped graphyne/g-C3N4, which is 5.89 times larger than that of g-C3N4 (0.29 mmol⋅gcat-1⋅h-1). The improved mechanism of photocatalysis including higher photo-response and carrier separation rate is verified by transient photo-current, transient photo-potential, Mott-Schottky plots, Tafel plots, electrochemical impedance spectroscopy, turn-over frequency, photoluminescence spectra, and UV-vis diffuse absorption spectra, etc. Overall, the current study shows that N-doped graphyne synthesized from CaC2 and triazine is a useful decoration to modulate the photocatalytic features of g-C3N4, which can also be widely extended for in-situ modification of other photocatalysts.
Collapse
Affiliation(s)
- Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenzhu Liu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
2
|
Chen H, Sun M, Zhao J, Huang X, Teng H, Gao Y, Li Z, Li J. In-situ assembling novel N-Ti 3C 2/BiOCl xBr 1-x composites with enhanced photocatalytic degradation and nitrogen reduction activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124331. [PMID: 38669983 DOI: 10.1016/j.saa.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Herein, a collection of novel N-Ti3C2/BiOClxBr1-x composites are fabricated via a simple in-situ sonochemical process. Not only the preparation method for N-Ti3C2 but also the photocatalytic system of N-Ti3C2/BiOClxBr1-x are firstly developed. Multiple characterizations jointly demonstrate the successful fabrication of the composites. Compared to that of BiOClxBr1-x, the maximum improvements of 1.16, 1.25 and 1.26 folds are severally confirmed for the photocatalytic degradation of levofloxacin, Rhodamine B, and methylene blue over N-Ti3C2/BiOClxBr1-x composites. In addition, through radicals trapping tests, the primary active species in photocatalytic degradation process are verified to be O2-. Moreover, N-Ti3C2/BiOClxBr1-x composites also exhibit 1.18 and 1.14 times enhancements for NH3 production compared with that of BiOClxBr1-x with or without the presence of methanol, respectively. In addition, the maximum improvements of photo-current and photo-potential for BiOClxBr1-x are 1.29 and 1.86 folds with the introduction of N-Ti3C2, respectively. The enhanced photocatalytic activity of N-Ti3C2/BiOClxBr1-x composites is owing to the heightened light absorption, increased specific surface area, and accelerated separation of photoinduced carriers. Additionally, the stable photocatalytic properties of N-Ti3C2/BiOClxBr1-x are confirmed by three photocatalytic recycle tests on pollutant degradation and nitrogen reduction combined with X-ray diffraction patterns before and after three recycles. This study suggests that N-Ti3C2 is an efficient ornamentation for boosting photocatalytic activity ofBiOClxBr1-x, which can also be expanded as a promising modifier for other semiconductors.
Collapse
Affiliation(s)
- Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jun Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
3
|
Meng L, Jian J, Yang D, Dan Y, Sun W, Ai Q, Zhang Y, Zhou H. Hydrophilicity and Pore Structure Enhancement in Polyurethane/Silk Protein-Bismuth Halide Oxide Composite Films for Photocatalytic Degradation of Dye. Int J Mol Sci 2024; 25:6653. [PMID: 38928359 PMCID: PMC11203534 DOI: 10.3390/ijms25126653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Polyurethane/silk protein-bismuth halide oxide composite films were fabricated using a blending-wet phase transformationin situsynthesis method. The crystal structure, micromorphology, and optical properties were conducted using XRD, SEM, and UV-Vis DRS characterize techniques. The results indicated that loaded silk protein enhanced the hydrophilicity and pore structure of the polyurethane composite films. The active species BiOX were observed to grow as nanosheets with high dispersion on the internal skeleton and silk protein surface of the polyurethane-silk protein film. The photocatalytic efficiency of BiOX/PU-SF composite films was assessed through the degradation of Rhodamine B under visible light irradiation. Among the tested films, the BiOBr/PU-SF composite exhibited the highest removal rate of RhB at 98.9%, surpassing the removal rates of 93.7% for the BiOCl/PU-SF composite and 85.6% for the BiOI/PU-SF composite. Furthermore, an active species capture test indicated that superoxide radical (•O2-) and hole (h+) species played a predominant role in the photodegradation process.
Collapse
Affiliation(s)
- Lingxi Meng
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Jian Jian
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Dexing Yang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Yixiao Dan
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Weijie Sun
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Qiuhong Ai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; (D.Y.); (W.S.); (Q.A.)
| | - Yusheng Zhang
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan Engineering Research Center for Functional Film Materials, Hunan University of Science and Technology, Xiangtan 411201, China; (L.M.); (Y.D.); (Y.Z.)
| |
Collapse
|
4
|
Li Z, Sun M, Chen H, Zhao J, Huang X, Gao Y, Teng H, Chen C. N-doped Ti 3C 2-reinforced porous g-C 3N 4 for photocatalytic contaminants degradation and nitrogen reduction. Dalton Trans 2024; 53:9750-9762. [PMID: 38780236 DOI: 10.1039/d4dt01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, a series of N-doped Ti3C2/porous g-C3N4 composites are ultrasonically prepared from N-doped Ti3C2 and porous g-C3N4 under N2 atmosphere. The structure, morphology, and optical characteristics of the as-prepared composites are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, etc. Moreover, photocatalytic measurements show that N-doped Ti3C2 is an excellent modifier for porous g-C3N4 to heighten its photocatalytic activity. Only 44.1% of rhodamine B can be degraded by the photocatalysis of pristine porous g-C3N4, while the photocatalytic degradation ratio of rhodamine B can reach up to 97.5% for the optimal N-doped Ti3C2 loading composites under visible light for 15 min. Moreover, the photocatalytic tests of N2 fixation confirm that the optimal composites show the highest production yield of NH4+ (11.8 μmol gcat-1 h-1), which is 2.11-folds more than that of porous g-C3N4 (5.6 μmol gcat-1 h-1). The reinforced photocatalytic properties are revealed to profit from the more photogenerated electrons and holes' separation, higher ability for light response, and more abundant active sites. This work develops the route for boosting the photocatalytic properties of porous g-C3N4 with N-doped Ti3C2.
Collapse
Affiliation(s)
- Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| | - Chen Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China.
| |
Collapse
|
5
|
Kubiak A, Zalas M, Cegłowski M. Innovative microwave in situ approach for crystallizing TiO 2 nanoparticles with enhanced activity in photocatalytic and photovoltaic applications. Sci Rep 2024; 14:12617. [PMID: 38824155 PMCID: PMC11144198 DOI: 10.1038/s41598-024-63614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
This investigation introduces an innovative approach to microwave-assisted crystallization of titania nanoparticles, leveraging an in situ process to expedite anatase crystallization during microwave treatment. Notably, this technique enables the attainment of crystalline material at temperatures below 100 °C. The physicochemical properties, including crystallinity, morphology, and textural properties, of the synthesized TiO2 nanomaterials show a clear dependence on the microwave crystallization temperature. The presented microwave crystallization methodology is environmentally sustainable, owing to heightened energy efficiency and remarkably brief processing durations. The synthesized TiO2 nanoparticles exhibit significant effectiveness in removing formic acid, confirming their practical utility. The highest efficiency of formic acid photodegradation was demonstrated by the T_200 material, reaching almost 100% efficiency after 30 min of irradiation. Furthermore, these materials find impactful application in dye-sensitized solar cells, illustrating a secondary avenue for the utilization of the synthesized nanomaterials. Photovoltaic characterization of assembled DSSC devices reveals that the T_100 material, synthesized at a higher temperature, exhibits the highest photoconversion efficiency attributed to its outstanding photocurrent density. This study underscores the critical importance of environmental sustainability in the realm of materials science, highlighting that through judicious management of the synthesis method, it becomes feasible to advance towards the creation of multifunctional materials.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| |
Collapse
|
6
|
Li S, Sun M, Huang X, Chen H, Zhao J, Li Z. In situ sonochemical synthesis of flower-like N-graphyne/BiOCl 0.5Br 0.5 microspheres for efficient removal of levofloxacin. Dalton Trans 2024; 53:917-931. [PMID: 38105741 DOI: 10.1039/d3dt03418f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
In this work, N-graphyne is in situ coupled with BiOCl0.5Br0.5via a facile one-step sonochemical method. To our knowledge, both the synthesis strategy for BiOCl0.5Br0.5 and the N-graphyne/BiOCl0.5Br0.5 photocatalytic system are new developments. A collection of characterization methods is adopted to detect the morphologies, structures, and electronic and optical properties. The results demonstrate that wrinkle-like N-graphyne nanosheets successfully enwind around or on flower-like BiOCl0.5Br0.5 microspheres, which are regularly assembled by BiOCl0.5Br0.5 nanosheets. Compared with pristine BiOCl0.5Br0.5, N-graphyne/BiOCl0.5Br0.5 composites exhibit superior adsorption capacity and visible-light-driven photocatalytic degradation of levofloxacin. In particular, the optimal N-graphyne amount for ameliorating the photocatalytic performance of BiOCl0.5Br0.5 is ascertained. In addition, the good stable performance for photocatalysis is confirmed by four cycling experiments. The dominant active species is confirmed to be O2˙- during photodegradation. The improved photocatalytic activity is attributed to the enhanced visible light response and the accelerated transfer/separation of photogenerated carriers by N-graphyne, which are verified using UV-vis absorption spectra, photocurrents, photopotentials, Nyquist plots, and Mott-Schottky curves. This study develops a new perspective for the synthesis and modification of BiOX solid solution, which can be used as an efficient photocatalyst.
Collapse
Affiliation(s)
- Shuyan Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
7
|
Wang Q, Zhao S, Zhao Y, Deng Y, Yang W, Ye Y, Wang K. Construction of Z-scheme Bi 2O 3/CeO 2 heterojunction for enhanced photocatalytic capacity of TiO 2 NTs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123405. [PMID: 37722161 DOI: 10.1016/j.saa.2023.123405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Photocatalytic technology was recognized to be the effective strategy to overcome the obstacles of environment pollution and energy shortage, and the novel photocatalyst design/construction was the key point for photocatalytic performance improvement. In this paper, the Z-scheme Bi2O3 and CeO2 heterojunction was constructed on TiO2 nanotube arrays (TiO2 NTs) by the hydrothermal deposition method. The Bi2O3-CeO2 cosensitization not only extended the solar absorption region but also accelerated the photoelectron separation and transfer, finally enhanced the photocatalytic property. The photocatalysts exhibited the high RhB/MB photodegradation and Cr(VI) reduction, and the photoelectric conversion and photocatalytic H2 evolution were also preeminent. The Z-scheme heterojunction construction was recognized to be the reason for the high photoactivity, and O2- and OH radicals were formed and investigated as the main active species for the dye photodegradation. The work gives the simple method and idea to construct novel ternary Z-scheme heterojunctions with high photocatalytic capacity for environment remediation and new energy development.
Collapse
Affiliation(s)
- Qingyao Wang
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China.
| | - Shengzhan Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuhua Zhao
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China
| | - Yadan Deng
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China
| | - Wen Yang
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China
| | - Yizhuang Ye
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China
| | - Kesheng Wang
- Anhui Engineering Research Center for High Efficiency Intelligent Photovoltaic Module, Chaohu University, Hefei 238000, China.
| |
Collapse
|
8
|
Liu Z, Luo M, Yuan S, Meng L, Ding W, Su S, Cao Y, Wang Y, Li X. Boron-doped graphene quantum dot/bismuth molybdate composite photocatalysts for efficient photocatalytic nitrogen fixation reactions. J Colloid Interface Sci 2023; 650:1301-1311. [PMID: 37478747 DOI: 10.1016/j.jcis.2023.07.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Bismuth molybdate (BMO) is a promising visible-driven photocatalyst and constructing heterojunctions in BMO-based materials is an effective way to enhance photocatalytic performance. In this study, boron-doped graphene quantum dots (BGQDs) were synthesized by one-step pyrolysis and carbonization, followed by the preparation of bismuth molybdate/boron-doped graphene quantum dots (BGQDs/BMO) heterojunction photocatalysts using in-situ growth method. The introduction of BGQDs significantly improved the photocatalytic nitrogen fixation activity under the irradiation of visible light and without scavengers. The highest NH3 yield was achieved with BGQDs/BMO-10, which was 3.48 times higher than pure phase BMO. This improvement was due to the formation of Z-scheme heterojunctions between BGQDs and BMO with the synergistic mechanism of interfacial charge transport and the generation of more protons. This study provides useful guidance for enhancing the visible-light nitrogen fixation performance of BMO materials.
Collapse
Affiliation(s)
- Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China.
| | - Shengbo Yuan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China.
| |
Collapse
|
9
|
Sun H, Qin P, Liang Y, Yang Y, Zhang J, Guo J, Hu X, Jiang Y, Zhou Y, Luo L, Wu Z. Sonochemically assisted the synthesis and catalytic application of bismuth-based photocatalyst: A mini review. ULTRASONICS SONOCHEMISTRY 2023; 100:106600. [PMID: 37741022 PMCID: PMC10520575 DOI: 10.1016/j.ultsonch.2023.106600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Recently, bismuth (Bi)-based photocatalysts have been a well-deserved hotspot in the field of photocatalysis owning to their photoelectrochemical properties driven by the distortion of the Bi 6 s orbital, while their narrow band gap and poor quantum efficiency still restrict their application. With the development of ultrasonic technology, it is expected to become a broom to clear the application obstacles of Bi-based photocatalysts. The special forces and environmental conditions brought by ultrasonic irradiation play beneficial roles in the preparation, modification and performance releasement of Bi-based photocatalysts. In this review, the role and influencing factors of ultrasound in the preparation and modification of Bi-based photocatalysts were introduced. Crucially, the mechanism of the improving the performance for various types of Bi-based photocatalysts by ultrasound in the whole process of photocatalysis was deeply analyzed. Then, the application of ultrasonic synergistic Bi-based photocatalysts in contaminants treatment and energy conversion was briefly introduced. Finally, based on an unambiguous understanding of ultrasonic technology in assisting Bi-based photocatalysts, the future directions and possibilities for ultrasonic synergistic Bi-based photocatalysts are explored.
Collapse
Affiliation(s)
- Haibo Sun
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Pufeng Qin
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunshan Liang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China.
| | - Xiaolong Hu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Yunfei Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, Changsha 410128, PR China.
| |
Collapse
|
10
|
Chang F, Zhao S, Lei Y, Wang X, Dong F, Zhu G, Kong Y. Jointly augmented photocatalytic NO removal by S-scheme Bi 12SiO 20/Ag 2MoO 4 heterojunctions with surface oxygen vacancies. J Colloid Interface Sci 2023; 649:713-723. [PMID: 37385036 DOI: 10.1016/j.jcis.2023.06.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The deep oxidation of NO molecules to NO3- species with the avoidance of toxic NO2 generation is a big and challengeable concern, which can be solved by the rational design and construction of catalytic systems with satisfactory structural and optical features. For such, in this investigation binary composites Bi12SiO20/Ag2MoO4 (BSO-XAM) were fabricated through a facile mechanical ball-milling route. From microstructural and morphological analyses, heterojunction structures with surface oxygen vacancies (OVs) were simultaneously created, contributing to the enhanced visible-light absorption, reinforced migration and separation of charge carries, and further boosted generation of reactive species such as superoxide radicals and singlet oxygen. Based on the density-functional theory (DFT) calculations, surface OVs induced the strengthened adsorption and activation of O2, H2O, and NO molecules and oxidation of NO to NO2, while heterojunction structures were beneficial for the continuous oxidation of NO2 to NO3- species. Thus, the heterojunction structures with surface OVs synergistically guaranteed the augmented photocatalytic NO removal and constrained NO2 generation of BSO-XAM through a typical S-scheme model. This study may provide scientific guidances for the photocatalytic control and removal of NO at ppb level by Bi12SiO20-based composites through the mechanical ball-milling protocol.
Collapse
Affiliation(s)
- Fei Chang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shanshan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yibo Lei
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaomeng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Fan Dong
- Research Center for Environmental Science & Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062, PR China.
| | - Yuan Kong
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics CAS Center for Excellence in Nanoscience and Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
11
|
Zhou P, Qin B, Zhang L, Wu Z, Dai Y, Hu C, Xu H, Mao Z. Facile construction of photocatalytic cellulose-based sponge with stable flotation properties as efficient and recyclable photocatalysts for sewage treatment. Int J Biol Macromol 2023; 239:124233. [PMID: 36996952 DOI: 10.1016/j.ijbiomac.2023.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Dispersion and recycling of powdered nano-photocatalysts for water purification is still not an easy task. The self-supporting and floating photocatalytic cellulose-based sponges ware conveniently prepared by anchoring BiOX nanosheet arrays on cellulose-based sponge's surface. The introduction of sodium alginate into the cellulose-based sponge significantly enhanced the electrostatic adsorption of bismuth oxygen ions and promoted the formation of bismuth oxyhalide (BiOX) crystal nuclei. Among the photocatalytic cellulose-based sponges, the sponge (BiOBr-SA/CNF) modified with bismuth oxybromide displayed excellent photocatalytic ability for photodegrading 96.1 % rhodamine B within 90 min under 300 W Xe lamp irradiation (λ > 400 nm). The loading of bismuth oxybromide on cellulose-based sponge's surface improves the flotation stability of the cellulose-based sponge. Benefiting from excellent load fastness of bismuth oxybromide nanosheet and flotation stability of BiOBr-SA/CNF sponge, after 5 cycles of recycling, the photodegradation rates of BiOBr-SA/CNF sponge to rhodamine B remained above 90.2 % (90 min), and it also has excellent photocatalytic degradation effect on methyl orange and herbicide isoproteron. This work may provide a convenient and efficient method to construct self-supporting and floating photocatalytic sponges using cellulose based materials as substrates for sewage treatment.
Collapse
|
12
|
Wang K, Yu X, Yang F, Liu Z, Li Z, Zhang T, Niu J, Yao B. Research Progress on Cu
2
O‐based Type‐II Heterojunction Photocatalysts for Photocatalytic Removal of Antibiotics. ChemistrySelect 2022. [DOI: 10.1002/slct.202202186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kai Wang
- School of Science Xi'an University of Technology Xi'an 710048 China
- Material Corrosion and Protection Key Laboratory of Shaanxi Province Xi'an 710048 China
| | - Xiaojiao Yu
- School of Science Xi'an University of Technology Xi'an 710048 China
- Material Corrosion and Protection Key Laboratory of Shaanxi Province Xi'an 710048 China
| | - Fan Yang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Zongbin Liu
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Zongyang Li
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Ting Zhang
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Jinfen Niu
- School of Science Xi'an University of Technology Xi'an 710048 China
| | - Binhua Yao
- School of Science Xi'an University of Technology Xi'an 710048 China
| |
Collapse
|