1
|
Gluck-Thaler E, Shaikh MA, Wood CW. Multivariate Divergence in Wild Microbes: No Evidence for Evolution along a Genetic Line of Least Resistance. Am Nat 2025; 205:107-124. [PMID: 39718788 DOI: 10.1086/733184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (G) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.
Collapse
|
2
|
Stallman JK, Johnston PR, Lickey EB, Marlin M, Melie T, Quandt CA, Aime MC, Haelewaters D. Recent fieldwork and fungarium studies double known diversity of Chlorosplenium and improve understanding of species distributions. Mycologia 2024; 116:993-1018. [PMID: 39141581 DOI: 10.1080/00275514.2024.2364567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/03/2024] [Indexed: 08/16/2024]
Abstract
Chlorosplenium is a small genus comprising five species of inoperculate discomycetes in the order Helotiales (Leotiomycetes) often recognizable by their bright yellowish-green colors and gregarious growth on wood. In this study, we describe five new species-C. aotearoa, C. australiense, C. cusucoense, C. epimorsicum, and C. hawaiiense-based on a combination of recent fieldwork and examination of previously collected fungarium specimens. We use an integrative taxonomic approach to support the distinction of new species, incorporating morphology and DNA sequence data with biogeography. Macro- and micromorphological features of apothecia for all species and culture characteristics for four of the five new species are documented. A multilocus phylogeny based on nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2, partial large subunit nuc ribosomal DNA (28S nuc rDNA), and A-B regions of the largest subunit of RNA polymerase II (RPB1) gene is presented. Additionally, we report Chlorosplenium chlora from Europe for the first time and expand our knowledge of the diversity and distributions of species in this genus in America, Australia, and New Zealand.
Collapse
Affiliation(s)
- Jeffery K Stallman
- Department of Botany and Plant Pathology, Purdue University, Lafayette, Indiana 47901
| | | | - Edgar B Lickey
- Department of Biology and Environmental Science, Bridgewater College, Bridgewater, Virginia 22812
| | - Maria Marlin
- Department of Biology and Environmental Science, Bridgewater College, Bridgewater, Virginia 22812
| | - Tina Melie
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, Lafayette, Indiana 47901
| | - Danny Haelewaters
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
- Research Group Mycology, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czechia
| |
Collapse
|
3
|
She Z, Wang J, Pan X, Ma D, Gao Y, Wang S, Chuai X, Mu Y, Yue Z. Multi-omics insights into biogeochemical responses to organic matter addition in an acidic pit lake: Implications for bioremediation. WATER RESEARCH 2024; 254:121404. [PMID: 38442608 DOI: 10.1016/j.watres.2024.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Acidic pit lakes (APLs) emerge as reservoirs of acid mine drainage in flooded open-pit mines, representing extreme ecosystems and environmental challenges worldwide. The bioremediation of these oligotrophic waters necessitates the addition of organic matter, but the biogeochemical response of APLs to exogenous organic matter remains inadequately comprehended. This study delves into the biogeochemical impacts and remediation effects of digestate-derived organic matter within an APL, employing a multi-omics approach encompassing geochemical analyses, amplicon and metagenome sequencing, and ultra-high resolution mass spectrometry. The results indicated that digestate addition first stimulated fungal proliferation, particularly Ascomycetes and Basidiomycetes, which generated organic acids through lignocellulosic hydrolysis and fermentation. These simple compounds further supported heterotrophic growth, including Acidiphilium, Acidithrix, and Clostridium, thereby facilitating nitrate, iron, and sulfate reduction linked with acidity consumption. Nutrients derived from digestate also promoted the macroscopic development of acidophilic algae. Notably, the increased sulfate reduction-related genes primarily originated from assimilatory metabolism, thus connecting sulfate decrease to organosulfur increase. Assimilatory and dissimilatory sulfate reduction collectively contributed to sulfate removal and metal fixation. These findings yield multi-omics insights into APL biogeochemical responses to organic matter addition, enhancing the understanding of carbon-centered biogeochemical cycling in extreme ecosystems and guiding organic amendment-based bioremediation in oligotrophic polluted environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yijun Gao
- Luohe Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Hefei, Anhui 230009, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Ma'anshan, Anhui 243000, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
4
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
5
|
Vohník M, Bruzone MC, Knoblochová T, Fernández NV, Kolaříková Z, Větrovský T, Fontenla SB. Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia. MYCORRHIZA 2023; 33:425-447. [PMID: 37792114 DOI: 10.1007/s00572-023-01125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023]
Abstract
Core Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host × site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America). While we found typical ericoid mycorrhiza in all combinations, we did not detect ectomycorrhiza and arbuscular mycorrhiza. Superficial mantles of various thickness formed by non-clamped hyphae were observed in all combinations except Calluna vulgaris from N. Bohemia. Some samples contained frequent intercellular hyphae while others possessed previously unreported intracellular haustoria-like structures linked with intracellular hyphal coils. The 711 detected fungal OTU were dominated by Ascomycota (563) and Basidiomycota (119), followed by four other phyla. Ascomycetes comprised Helotiales (255), Pleosporales (53), Chaetothyriales (42), and other 19 orders, while basidiomycetes Sebacinales (42), Agaricales (28), Auriculariales (7), and other 14 orders. While many dominant OTU from both hemispheres lacked close relatives in reference databases, many were very similar to identical to unnamed sequences from around the world. On the other hand, several significant ericaceous mycobionts were absent in our dataset, incl. Cairneyella, Gamarada, Kurtia, Lachnum, and Leohumicola. Most of the detected OTU could not be reliably linked to a particular trophic mode, and only two could be reliably assigned to the archetypal ErMF Hyaloscypha hepaticicola. Probable ErMF comprised Hyaloscypha variabilis and Oidiodendron maius, both detected only in N. Bohemia. Possible ErMF comprised sebacinoid fungi and several unnamed members of Hyaloscypha s. str. While H. hepaticicola was dominant only in C. vulgaris, this model ErM host lacked O. maius and sebacinoid mycobionts. Hyaloscypha hepaticicola was absent in two and very rare in six combinations from Patagonia. Nine OTU represented dark septate endophytes from the Phialocephala fortinii s. lat.-Acephala applanata species complex, including the most abundant OTU (the only detected in all combinations). Statistical analyses revealed marked differences between N. Bohemia and Patagonia, but also within Patagonia, due to the unique community detected in a Valdivian temperate rainforest. Our results show that the ericaceous hair roots may host diverse mycobionts with mostly unknown functions and indicate that many novel ErMF lineages await discovery. Transhemispheric differences (thousands of km) in their communities may be evenly matched by local differences (scales of km, m, and less).
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
| | - M Clara Bruzone
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, IPATEC (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Río Negro, Argentina
| | - Tereza Knoblochová
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Natalia V Fernández
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, IPATEC (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Zuzana Kolaříková
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Sonia B Fontenla
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, IPATEC (Universidad Nacional del Comahue-CONICET), San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
6
|
Itagaki H, Hosoya T. A new genus Neobelonopsis and two new species of Trichobelonium (Helotiales, Ascomycota) discovered mainly from poaceous grasses native to Asia in Japan. MycoKeys 2023; 99:45-85. [PMID: 37614655 PMCID: PMC10442789 DOI: 10.3897/mycokeys.99.90117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Mollisioid fungi, represented by Mollisia (Fr.) P. Karst., are characterized by soft, sessile apothecia with globose, dark-celled excipula, hyaline ascospores, and worldwide distribution in temperate regions. Their generic and species delimitation is difficult due to the lack of distinct features, and studies based on DNA sequences are urgently required. Two genera of mollisioid fungi, Belonopsis and Trichobelonium, comprise relatively few species and are recognized by (0-)1-3-septate ascospores, medullary excipulum composed of loosely interwoven hyphae, and calcium oxalate crystals in the excipulum. Specimens of undescribed species that are morphologically assignable to Belonopsis or Trichobelonium were collected from various sites in Japan and their assignment to the proper genera was attempted. According to a molecular phylogenetic analysis involving members of Mollisiaceae based on concatenated sequences of ITS, LSU, and RPB1, eight taxonomic entities were placed in a strongly supported single clade with Mollisiadiesbachiana, separated from the type species of Belonopsis, B.excelsior. A new genus Neobelonopsis was thus proposed to accommodate the undescribed species. In this study, eight new species of Neobelonopsis and two new species of Trichobelonium were described. A new combination was also proposed for M.diesbachiana. The generic distinction of Neobelonopsis and Trichobelonium was supported by molecular analysis. Some additional characteristics to delimit Trichobelonium were identified, such as the presence of anchoring hyphae between the base of the apothecium and subiculum, and the production of abundant crystals and soluble pigments on the colonies. Derivative species of Neobelonopsis were found to have multi-septa in ascospores.
Collapse
Affiliation(s)
- Hiyori Itagaki
- Department of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, JapanNational Museum of Nature and ScienceTsukubaJapan
| | - Tsuyoshi Hosoya
- Department of Botany, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, JapanNational Museum of Nature and ScienceTsukubaJapan
| |
Collapse
|
7
|
Paiva DS, Fernandes L, Pereira E, Trovão J, Mesquita N, Tiago I, Portugal A. Exploring Differences in Culturable Fungal Diversity Using Standard Freezing Incubation-A Case Study in the Limestones of Lemos Pantheon (Portugal). J Fungi (Basel) 2023; 9:jof9040501. [PMID: 37108954 PMCID: PMC10143818 DOI: 10.3390/jof9040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we explored the biodiversity and abundance of culturable fungi in four samples associated with different biodeterioration outlines collected from the Lemos Pantheon, a limestone-built artwork in Portugal. We compared the results from prolonged standard freezing with those previously obtained from fresh samples to analyze differences in the obtained community and assess the effectiveness of the standard freezing incubation protocol in uncovering a different segment of culturable fungal diversity. Our results showed a slight decrease in culturable diversity, but over 70% of the obtained isolates were not present in the previously studied fresh samples. We also identified a high number of potential new species with this procedure. Moreover, the use of a wide variety of selective culture media positively influenced the diversity of the cultivable fungi obtained in this study. These findings highlight the importance of developing new protocols under varying conditions to accurately characterize the culturable fraction in a given sample. The identification and study of these communities and their possible contribution to the biodeterioration process is crucial knowledge for formulating effective conservation and restoration plans to prevent further damage to valuable cultural heritage assets.
Collapse
Affiliation(s)
- Diana S Paiva
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís Fernandes
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Emília Pereira
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Trovão
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Nuno Mesquita
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Igor Tiago
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - António Portugal
- Centre for Functional Ecology (CFE)-Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
- TERRA-Associate Laboratory for Sustainable Land Use and Ecosystem Services, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
8
|
Suleiman WB. A multi-aspect analysis of two analogous aspergillus spp. belonging to section Flavi: aspergillus flavus and aspergillus oryzae. BMC Microbiol 2023; 23:71. [PMID: 36922770 PMCID: PMC10015910 DOI: 10.1186/s12866-023-02813-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Microfungal isolates were routinely identified depending on both macro and micro morphological characteristics, sometimes, some fungal isolates appeared to be similar and such cases caused severe confusion for mycologists during the preliminary identification. During our previous studies dealing with isolation of fungi for some biotechnological applications; two mystifying species Aspergillus flavus and Aspergillus oryzae showed similar cultural and macroscopic features. Therefore, the current study aimed to easily distinguish between these two species depending on simple approaches which are routinely followed by a large segment of researchers. Investigation of the macroscopic features was performed to check the fungal growth on four different media (PDA, MEA, YES, and CYA) followed by microscopic examination using an ordinary light microscope, and scanning electron microscope SEM. Also, screening of secondary metabolites for both strains was preliminarily identified to find out the difference between their metabolic profiles. Finally, ITS rDNA was involved to clarify the molecular differences along their partial sequence. Conclusively, the BLAST strategy confirmed the similarity of ITS rDNA segments of both fungal strains that supported our hypothesis. The color of the fungal growth is a very critical factor whereas it is extensively influenced by the type of cultivation media. Accordingly, the YES medium was an inspiring tool assisting in prompt differentiation during the culture investigation step whereas A. oryzae and A. flavus appeared significant mustard yellow and olive green respectively. During the microscopic examination, the CYA medium also had a robust effect on the formation of the conidial chain whereas the knit long chain was observed in A. oryzae while the conidia appeared scattered and not in a chain in the case of A. flavus. Likewise, both two strains possessed different metabolic profiles where A. oryzae is not an Afla toxin producer, unlike A. flavus.
Collapse
Affiliation(s)
- Waleed Bakry Suleiman
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, The Permanent Camp St., 6th Ward, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
9
|
Tanney JB, Di Stefano J, Miller JD, McMullin DR. Natural products from the Picea foliar endophytes Niesslia endophytica sp. nov. and Strasseria geniculata. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
10
|
Navarrete AA, Aburto F, González-Rocha G, Guzmán CM, Schmidt R, Scow K. Anthropogenic degradation alter surface soil biogeochemical pools and microbial communities in an Andean temperate forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158508. [PMID: 36063938 DOI: 10.1016/j.scitotenv.2022.158508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.
Collapse
Affiliation(s)
- Alejandro Atenas Navarrete
- Postgrado Facultad de Ciencias Forestales, Universidad de Concepción, Chile; Laboratorio de Investigación en Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Chile; Iniciativa Foresta Nativa, Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Soil and Crop Sciences Department, Texas A&M University, 370 Olsen Blvd. Heep Center, TX 77845, USA; Departamento de Planificación Territorial y Sistemas Urbanos, Facultad de Ciencias Ambientales, Universidad de Concepción, Chile.
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Chile
| | - Radomir Schmidt
- Working Lands Innovation Center at the Institute of the Environment, University of California, Davis, USA
| | - Kate Scow
- Soil Microbial Ecology Lab, Department of Land, Air and Water Resources, University of California, Davis, USA
| |
Collapse
|
11
|
Szczepkowski A, Gierczyk B, Kujawa A, Ślusarczyk T. Contribution to the Knowledge of Fungi of the Kampinos National Park (Central Poland): Part 6 – With Particular Emphasis on the Species Occurring on Windthrown Areas. ACTA MYCOLOGICA 2022. [DOI: 10.5586/am.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
We identified 17 species of fungi that are new to Kampinos National Park. Sixteen were found during surveys of areas damaged by a strong wind in 2017. The remaining species was found outside the windthrow area. Descriptions of four species new to Poland (
Cortinarius subcompar
,
Hyaloscypha quercicola
,
Hypocrea tremelloides
, and
Trechispora
aff.
invisitata
) are also provided. The current number of macromycetes taxa identified in Kampinos National Park is 1,654.
Collapse
|
12
|
Mikheev VS, Struchkova IV, Ageyeva MN, Brilkina AA, Berezina EV. The Role of Phialocephala fortinii in Improving Plants' Phosphorus Nutrition: New Puzzle Pieces. J Fungi (Basel) 2022; 8:1225. [PMID: 36422046 PMCID: PMC9695368 DOI: 10.3390/jof8111225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Plants' mineral nutrition in acidic soils can be facilitated by phosphate solubilizing fungi inhabiting the root systems of these plants. We attempt to find dark septate endophyte (DSE) isolates in the roots of wild-heather plants, which are capable of improving plants' phosphorus nutrition levels. Bright-field and confocal laser scanning microscopy were used for the visualization of endophytes. A model system of co-cultivation with Vaccinium macrocarpon Ait. was used to study a fungal isolate's ability to supply plants with phosphorus. Fungal phytase activity and phosphorus content in plants were estimated spectrophotometrically. In V. vitis-idaea L. roots, we obtained a Phialocephala fortinii Wang, Wilcox DSE2 isolate with acid phytase activity (maximum 6.91 ± 0.17 U on 21st day of cultivation on potato-dextrose broth medium) and the ability to accumulate polyphosphates in hyphae cells. The ability of the isolate to increase both phosphorus accumulation and biomass in V. macrocarpon is also shown. The data obtained for the same isolate, as puzzle pieces put together, indicate the possible mediation of P. fortinii DSE2 isolate in the process of phosphorus intake from inorganic soil reserves to plants.
Collapse
|
13
|
Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M. Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Stud Mycol 2022; 103:87-212. [PMID: 37342155 PMCID: PMC10277272 DOI: 10.3114/sim.2022.103.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 06/13/2024] Open
Abstract
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.
Collapse
Affiliation(s)
- M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - M. Hernández-Restrepo
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - F. Sklenář
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| | - J. Nekvindová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, 500 05 Hradec Králové, Czech Republic
| | - K. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - M. Kolařík
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| |
Collapse
|
14
|
Phototrophic and fungal communities inhabiting the Roman cryptoporticus of the national museum Machado de Castro (UNESCO site, Coimbra, Portugal). World J Microbiol Biotechnol 2022; 38:157. [PMID: 35809137 DOI: 10.1007/s11274-022-03345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Caves are oligotrophic environments, characterized by constant temperatures, high humidity and low natural light. However, microbial shifts can still happen in such environments, especially with the increase in tourist activity and implementation of artificial lights, making caves even more susceptible to environmental changes. As a result, proliferation of phototrophic organisms can increase dramatically, leading to their settlement on stone surfaces, which in turn facilitates the development of heterotrophic organisms, such as fungi and bacteria. The Roman Cryptoporticus of the National Museum Machado de Castro, erected by the Romans in the 1st or second century, is one of the most emblematic buildings in the city of Coimbra. However, the majority of the rooms that constitute this monument show signs of biodeterioration by microalgae and cyanobacteria as well as of fungi. The aim of this study was to characterize the phototrophic and fungal communities at this site, employing culture-dependent and-independent methodologies. Culture-dependent results showed that the phototrophic communities were mainly composed of green microalgae, whereas the culture-independent showed that cyanobacteria were the most dominant. As to the fungal communities, both approaches identified various entomopathogenic fungal species. In addition, the culture-independent analysis also allowed to verify the presence of animal reads, suggesting the hypothesis that animal vectored dispersion can play an important role in the development of fungi at this environment.
Collapse
|
15
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Nkuna R, Ijoma GN, Matambo TS. Applying EDTA in Chelating Excess Metal Ions to Improve Downstream DNA Recovery from Mine Tailings for Long-Read Amplicon Sequencing of Acidophilic Fungi Communities. J Fungi (Basel) 2022; 8:jof8050419. [PMID: 35628675 PMCID: PMC9143545 DOI: 10.3390/jof8050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022] Open
Abstract
The hostile environment of mine tailings contains unique microbial life capable of bioleaching. The metagenomic analysis of such an environment provides an in-depth understanding of the microbial life and its potential, especially in biomining operations. However, DNA recovery from samples collected in those environments is challenging due to the presence of metal ions that interfere with the DNA analysis. A varied concentration of EDTA (4–13 µg/µL) to chelate the metal ions of enriched tailing samples prior to DNA extraction was performed. The results show that 9 µg/µL of EDTA was effective in most samples. However, the increasing concentration of EDTA negatively affected the DNA recovery. The sequencing of the successfully extracted DNA revealed a diverse range of fungal genera, some of which have not been previously reported in tailing or bioleaching applications. The dominant genera include Fodinomyces, Penicillium, Recurvomuces, Trichoderma, and Xenoacremonium; their traits were determined using the FungalTraits database. This study demonstrates the need to include a preliminary metal-chelating step using EDTA before DNA extractions for samples collected from metal-rich environments. It further showed the need for optimization but provided a benchmark range, particularly for tailings. However, we caution that a further EDTA removal step from the extracted DNA should be included to avoid its interferences in downstream applications.
Collapse
|
17
|
Crous PW, Osieck ER, Jurjević Ž, Boers J, van Iperen AL, Starink-Willemse M, Dima B, Balashov S, Bulgakov TS, Johnston PR, Morozova OV, Pinruan U, Sommai S, Alvarado P, Decock CA, Lebel T, McMullan-Fisher S, Moreno G, Shivas RG, Zhao L, Abdollahzadeh J, Abrinbana M, Ageev DV, Akhmetova G, Alexandrova AV, Altés A, Amaral AGG, Angelini C, Antonín V, Arenas F, Asselman P, Badali F, Baghela A, Bañares A, Barreto RW, Baseia IG, Bellanger JM, Berraf-Tebbal A, Biketova AY, Bukharova NV, Burgess TI, Cabero J, Câmara MPS, Cano-Lira JF, Ceryngier P, Chávez R, Cowan DA, de Lima AF, Oliveira RL, Denman S, Dang QN, Dovana F, Duarte IG, Eichmeier A, Erhard A, Esteve-Raventós F, Fellin A, Ferisin G, Ferreira RJ, Ferrer A, Finy P, Gaya E, Geering ADW, Gil-Durán C, Glässnerová K, Glushakova AM, Gramaje D, Guard FE, Guarnizo AL, Haelewaters D, Halling RE, Hill R, Hirooka Y, Hubka V, Iliushin VA, Ivanova DD, Ivanushkina NE, Jangsantear P, Justo A, Kachalkin AV, Kato S, Khamsuntorn P, Kirtsideli IY, Knapp DG, Kochkina GA, Koukol O, Kovács GM, Kruse J, Kumar TKA, Kušan I, Læssøe T, Larsson E, Lebeuf R, Levicán G, Loizides M, Marinho P, Luangsa-Ard JJ, Lukina EG, Magaña-Dueñas V, Maggs-Kölling G, Malysheva EF, Malysheva VF, Martín B, Martín MP, Matočec N, McTaggart AR, Mehrabi-Koushki M, Mešić A, Miller AN, Mironova P, Moreau PA, Morte A, Müller K, Nagy LG, Nanu S, Navarro-Ródenas A, Nel WJ, Nguyen TH, Nóbrega TF, Noordeloos ME, Olariaga I, Overton BE, Ozerskaya SM, Palani P, Pancorbo F, Papp V, Pawłowska J, Pham TQ, Phosri C, Popov ES, Portugal A, Pošta A, Reschke K, Reul M, Ricci GM, Rodríguez A, Romanowski J, Ruchikachorn N, Saar I, Safi A, Sakolrak B, Salzmann F, Sandoval-Denis M, Sangwichein E, Sanhueza L, Sato T, Sastoque A, Senn-Irlet B, Shibata A, Siepe K, Somrithipol S, Spetik M, Sridhar P, Stchigel AM, Stuskova K, Suwannasai N, Tan YP, Thangavel R, Tiago I, Tiwari S, Tkalčec Z, Tomashevskaya MA, Tonegawa C, Tran HX, Tran NT, Trovão J, Trubitsyn VE, Van Wyk J, Vieira WAS, Vila J, Visagie CM, Vizzini A, Volobuev SV, Vu DT, Wangsawat N, Yaguchi T, Ercole E, Ferreira BW, de Souza AP, Vieira BS, Groenewald JZ. Fungal Planet description sheets: 1284-1382. PERSOONIA 2021; 47:178-374. [PMID: 37693795 PMCID: PMC10486635 DOI: 10.3767/persoonia.2021.47.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjević Ž, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Boers
- Conventstraat 13A, 6701 GA Wageningen, Netherlands
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - B Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - T S Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa street 2/28, 354002 Sochi, Krasnodar region, Russia
| | - P R Johnston
- Manaaki Whenua - Landcare Research, P. Bag 92170, Auckland 1142, New Zealand
| | - O V Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - U Pinruan
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - S Sommai
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - P Alvarado
- ALVALAB, C/ Dr. Fernando Bongera, Severo Ochoa bldg. S1.04, 33006 Oviedo, Spain
| | - C A Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute - ELIM - Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - T Lebel
- State Herbarium of South Australia, Adelaide, South Australia 5000 Australia
| | | | - G Moreno
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - L Zhao
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - M Abrinbana
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - D V Ageev
- LLC 'Signatec', 630090, Inzhenernaya Str. 22, Novosibirsk, Russia
| | - G Akhmetova
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - A V Alexandrova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
| | - A Altés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A G G Amaral
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - C Angelini
- Herbario Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, Santo Domingo, Dominican Republic and Via Cappuccini, 78/8 - 33170 Pordenone, Italy
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - V Antonín
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - F Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - P Asselman
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - F Badali
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - A Baghela
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - A Bañares
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna. Apdo. 456, E-38200 La Laguna, Tenerife, Islas Canarias, Spain
| | - R W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - I G Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil
| | - J-M Bellanger
- CEFE, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier 3, EPHE, IRD, INSERM, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | - A Berraf-Tebbal
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Yu Biketova
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - N V Bukharova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Pr-t 100-let Vladivostoka 159, 690022 Vladivostok, Russia
| | - T I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - J Cabero
- C/ El Sol 6, 49800 Toro, Zamora, Spain
| | - M P S Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J F Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - P Ceryngier
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - R Chávez
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A F de Lima
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - R L Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970 Natal, RN, Brazil
| | - S Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Q N Dang
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - F Dovana
- Via Quargnento, 17, 15029, Solero (AL), Italy
| | - I G Duarte
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - A Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - F Esteve-Raventós
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A Fellin
- Via G. Canestrini 10/B, I-38028, Novella (TN), Italy
| | - G Ferisin
- Associazione Micologica Bassa Friulana, 33052 Cervignano del Friuli, Italy
| | - R J Ferreira
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
| | - A Ferrer
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - P Finy
- Zsombolyai u. 56, 8000 Székesfehérvár, Hungary
| | - E Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - A D W Geering
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - C Gil-Durán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - K Glässnerová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - A M Glushakova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Mechnikov Research Institute for Vaccines and Sera, 105064, Moscow, Maly Kazenny by-street, 5A, Russia
| | - D Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Ctra. LO-20, Salida 13, 26007, Logroño, Spain
| | | | - A L Guarnizo
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - D Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - R E Halling
- Inst. Systematic Botany, New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, USA 10458-5126
| | - R Hill
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Y Hirooka
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - V A Iliushin
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D D Ivanova
- The Herzen State Pedagogical University of Russia, 191186, 48 Moyka Embankment, Saint Petersburg, Russia
| | - N E Ivanushkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Jangsantear
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - A Justo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - A V Kachalkin
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - S Kato
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - P Khamsuntorn
- Microbe Interaction and Ecology Laboratory (BMIE), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - I Y Kirtsideli
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - G A Kochkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - O Koukol
- Department of Botany, Charles University, Faculty of Science, Benátská 2, 128 01 Prague 2, Czech Republic
| | - G M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - T K A Kumar
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - I Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T Læssøe
- Globe Inst./Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark, Denmark
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - G Levicán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | | | - P Marinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - E G Lukina
- Saint Petersburg State University, 199034, 7-9 Universitetskaya emb., St. Petersburg, Russia
| | - V Magaña-Dueñas
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | | | - E F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - V F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - B Martín
- Servicio Territorial de Agricultura, Ganadería y Desarrollo Rural de Zamora, C/ Prado Tuerto 17, 49019 Zamora, Spain
| | - M P Martín
- Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - N Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4001, Australia
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A Mešić
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - P Mironova
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - P-A Moreau
- Université de Lille, Faculté de pharmacie de Lille, EA 4483, F-59000 Lille, France
| | - A Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - K Müller
- Falkstraße 103, D-47058 Duisburg, Germany
| | - L G Nagy
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - S Nanu
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - A Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - W J Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - T H Nguyen
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - T F Nóbrega
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - M E Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - I Olariaga
- Rey Juan Carlos University, Dep. Biology and Geology, Physics and Inorganic Chemistry, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - B E Overton
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - S M Ozerskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Palani
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - F Pancorbo
- Sociedad Micológica de Madrid, Real Jardín Botánico, C/ Claudio Moyano 1, 28014 Madrid, Spain
| | - V Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Ménesi út 44. H-1118 Budapest, Hungary
| | - J Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T Q Pham
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - C Phosri
- Biology programme, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - E S Popov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - A Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Fitolab - Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - A Pošta
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - K Reschke
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 13, 60439 Frankfurt am Main, Germany
| | - M Reul
- Ostenstraße 19, D-95615 Marktredwitz, Germany
| | - G M Ricci
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - A Rodríguez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - J Romanowski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - N Ruchikachorn
- The Institute for the Promotion of Teaching Science and Technology, Bangkok, 10110, Thailand
| | - I Saar
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila Street 14A, 50411 Tartu, Estonia
| | - A Safi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - B Sakolrak
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - F Salzmann
- Kloosterweg 5, 6301WK, Valkenburg a/d Geul, The Netherlands
| | - M Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Sangwichein
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - L Sanhueza
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - T Sato
- Department of Agro-Food Science, Niigata Agro-Food University, 2416 Hiranedai, Tainai, Niigata Prefecture, Japan
| | - A Sastoque
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - B Senn-Irlet
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - A Shibata
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - K Siepe
- Geeste 133, D-46342 Velen, Germany
| | - S Somrithipol
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - M Spetik
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - P Sridhar
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - A M Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - K Stuskova
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - N Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - Y P Tan
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - I Tiago
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - S Tiwari
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Z Tkalčec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M A Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - C Tonegawa
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - H X Tran
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - N T Tran
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - J Trovão
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - V E Trubitsyn
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - J Van Wyk
- Department of Plant Soil and Microbial Sciences, 1066 Bogue Street, Michigan State University, East Lansing, MI, 48824 USA
| | - W A S Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J Vila
- Passatge del Torn, 4, 17800 Olot, Spain
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - S V Volobuev
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D T Vu
- Research Planning and International Cooperation Department, Plant Resources Center, An Khanh, Hoai Duc, Hanoi 152900, Vietnam
| | - N Wangsawat
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - T Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - E Ercole
- Via Murazzano 11, I-10141, Torino (TO), Italy
| | - B W Ferreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - A P de Souza
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - B S Vieira
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
18
|
Durán M, San Emeterio L, Canals RM. Comparison of Culturing and Metabarcoding Methods to Describe the Fungal Endophytic Assemblage of Brachypodium rupestre Growing in a Range of Anthropized Disturbance Regimes. BIOLOGY 2021; 10:biology10121246. [PMID: 34943161 PMCID: PMC8698972 DOI: 10.3390/biology10121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary The richness (number of species) of the fungi kingdom is estimated at 1.5 million species, but the vast majority remains unknown. Many of them inhabit plants—the so-called fungal endophytes—and may establish different types of interactions with their host plant. Fungal endophytes have been traditionally studied by letting them grow in appropriate culturing media in petri dishes, but novel massive DNA sequencing techniques which do not require a cultivation step (metabarcoding) are gaining ground. Both techniques were applied and compared to characterize the mycobiome of plants of a tall grass (Brachypodium rupestre) growing in high-mountain grasslands with different plant diversity (low and high). The two methods showed similar trends comparing endophyte richness between plant tissue types (root > rhizome > shoot) and between grasslands (low-diversity > high-diversity). However, the metabarcoding identified almost six times more endophyte species than the culturing although the most isolated fungal species via culturing, Omnidemptus graminis, was not recognized via metabarcoding. We conclude that the complementation of both techniques is still the best option to obtain a complete characterization of the fungal endophytic assemblage of the plant species. Abstract Fungal endophytes develop inside plants without visible external signs, and they may confer adaptive advantages to their hosts. Culturing methods have been traditionally used to recognize the fungal endophytic assemblage, but novel metabarcoding techniques are being increasingly applied. This study aims to characterize the fungal endophytic assemblage in shoots, rhizomes and roots of the tall grass Brachypodium rupestre growing in a large area of natural grasslands with a continuum of anthropized disturbance regimes. Seven out of 88 taxa identified via metabarcoding accounted for 81.2% of the reads (Helotiaceae, Lachnum sp. A, Albotricha sp. A, Helotiales A, Agaricales A, Mycena sp. and Mollisiaceae C), revealing a small group of abundant endophytes and a large group of rare species. Although both methods detected the same trends in richness and fungal diversity among the tissues (root > rhizome > shoot) and grasslands (low-diversity > high-diversity grasslands), the metabarcoding tool identified 5.8 times more taxa than the traditional culturing method (15 taxa) but, surprisingly, failed to sequence the most isolated endophyte on plates, Omnidemptus graminis. Since both methods are still subject to important constraints, both are required to obtain a complete characterization of the fungal endophytic assemblage of the plant species.
Collapse
|
19
|
Haelewaters D, Park D, Johnston PR. Multilocus phylogenetic analysis reveals that Cyttariales is a synonym of Helotiales. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Crous PW, Osieck ER, Jurjević Ž, Boers J, van Iperen AL, Starink-Willemse M, Dima B, Balashov S, Bulgakov TS, Johnston PR, Morozova OV, Pinruan U, Sommai S, Alvarado P, Decock CA, Lebel T, McMullan-Fisher S, Moreno G, Shivas RG, Zhao L, Abdollahzadeh J, Abrinbana M, Ageev DV, Akhmetova G, Alexandrova AV, Altés A, Amaral AGG, Angelini C, Antonín V, Arenas F, Asselman P, Badali F, Baghela A, Bañares A, Barreto RW, Baseia IG, Bellanger JM, Berraf-Tebbal A, Biketova AY, Bukharova NV, Burgess TI, Cabero J, Câmara MPS, Cano-Lira JF, Ceryngier P, Chávez R, Cowan DA, de Lima AF, Oliveira RL, Denman S, Dang QN, Dovana F, Duarte IG, Eichmeier A, Erhard A, Esteve-Raventós F, Fellin A, Ferisin G, Ferreira RJ, Ferrer A, Finy P, Gaya E, Geering ADW, Gil-Durán C, Glässnerová K, Glushakova AM, Gramaje D, Guard FE, Guarnizo AL, Haelewaters D, Halling RE, Hill R, Hirooka Y, Hubka V, Iliushin VA, Ivanova DD, Ivanushkina NE, Jangsantear P, Justo A, Kachalkin AV, Kato S, Khamsuntorn P, Kirtsideli IY, Knapp DG, Kochkina GA, Koukol O, Kovács GM, Kruse J, Kumar TKA, Kušan I, Læssøe T, Larsson E, Lebeuf R, Levicán G, Loizides M, Marinho P, Luangsa-Ard JJ, Lukina EG, Magaña-Dueñas V, Maggs-Kölling G, Malysheva EF, Malysheva VF, Martín B, Martín MP, Matočec N, McTaggart AR, Mehrabi-Koushki M, Mešić A, Miller AN, Mironova P, Moreau PA, Morte A, Müller K, Nagy LG, Nanu S, Navarro-Ródenas A, Nel WJ, Nguyen TH, Nóbrega TF, Noordeloos ME, Olariaga I, Overton BE, Ozerskaya SM, Palani P, Pancorbo F, Papp V, Pawłowska J, Pham TQ, Phosri C, Popov ES, Portugal A, Pošta A, Reschke K, Reul M, Ricci GM, Rodríguez A, Romanowski J, Ruchikachorn N, Saar I, Safi A, Sakolrak B, Salzmann F, Sandoval-Denis M, Sangwichein E, Sanhueza L, Sato T, Sastoque A, Senn-Irlet B, Shibata A, Siepe K, Somrithipol S, Spetik M, Sridhar P, Stchigel AM, Stuskova K, Suwannasai N, Tan YP, Thangavel R, Tiago I, Tiwari S, Tkalčec Z, Tomashevskaya MA, Tonegawa C, Tran HX, Tran NT, Trovão J, Trubitsyn VE, Van Wyk J, Vieira WAS, Vila J, Visagie CM, Vizzini A, Volobuev SV, Vu DT, Wangsawat N, Yaguchi T, Ercole E, Ferreira BW, de Souza AP, Vieira BS, Groenewald JZ. Fungal Planet description sheets: 1284-1382. PERSOONIA 2021; 47:178-374. [PMID: 38352974 PMCID: PMC10784667 DOI: 10.3767/persoonia.2023.47.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/04/2021] [Indexed: 02/16/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjević Ž, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Boers
- Conventstraat 13A, 6701 GA Wageningen, Netherlands
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - B Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - T S Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa street 2/28, 354002 Sochi, Krasnodar region, Russia
| | - P R Johnston
- Manaaki Whenua - Landcare Research, P. Bag 92170, Auckland 1142, New Zealand
| | - O V Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - U Pinruan
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - S Sommai
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - P Alvarado
- ALVALAB, C/ Dr. Fernando Bongera, Severo Ochoa bldg. S1.04, 33006 Oviedo, Spain
| | - C A Decock
- Mycothèque de l'Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute - ELIM - Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - T Lebel
- State Herbarium of South Australia, Adelaide, South Australia 5000 Australia
| | | | - G Moreno
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - L Zhao
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - J Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - M Abrinbana
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - D V Ageev
- LLC 'Signatec', 630090, Inzhenernaya Str. 22, Novosibirsk, Russia
| | - G Akhmetova
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - A V Alexandrova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
| | - A Altés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A G G Amaral
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - C Angelini
- Herbario Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, Santo Domingo, Dominican Republic and Via Cappuccini, 78/8 - 33170 Pordenone, Italy
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - V Antonín
- Department of Botany, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
| | - F Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - P Asselman
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - F Badali
- Department of Plant Protection, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia, Iran
| | - A Baghela
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - A Bañares
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna. Apdo. 456, E-38200 La Laguna, Tenerife, Islas Canarias, Spain
| | - R W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - I G Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil
| | - J-M Bellanger
- CEFE, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier 3, EPHE, IRD, INSERM, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | - A Berraf-Tebbal
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Yu Biketova
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - N V Bukharova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Pr-t 100-let Vladivostoka 159, 690022 Vladivostok, Russia
| | - T I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - J Cabero
- C/ El Sol 6, 49800 Toro, Zamora, Spain
| | - M P S Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J F Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - P Ceryngier
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - R Chávez
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A F de Lima
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - R L Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970 Natal, RN, Brazil
| | - S Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - Q N Dang
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - F Dovana
- Via Quargnento, 17, 15029, Solero (AL), Italy
| | - I G Duarte
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - A Eichmeier
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - A Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - F Esteve-Raventós
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica), 28805 Alcalá de Henares, Madrid, Spain
| | - A Fellin
- Via G. Canestrini 10/B, I-38028, Novella (TN), Italy
| | - G Ferisin
- Associazione Micologica Bassa Friulana, 33052 Cervignano del Friuli, Italy
| | - R J Ferreira
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
| | - A Ferrer
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - P Finy
- Zsombolyai u. 56, 8000 Székesfehérvár, Hungary
| | - E Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - A D W Geering
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - C Gil-Durán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - K Glässnerová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
| | - A M Glushakova
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Mechnikov Research Institute for Vaccines and Sera, 105064, Moscow, Maly Kazenny by-street, 5A, Russia
| | - D Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de La Rioja - Gobierno de La Rioja, Ctra. LO-20, Salida 13, 26007, Logroño, Spain
| | | | - A L Guarnizo
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - D Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - R E Halling
- Inst. Systematic Botany, New York Botanical Garden, 2900 Southern Blvd, Bronx, NY, USA 10458-5126
| | - R Hill
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Y Hirooka
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - V A Iliushin
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D D Ivanova
- The Herzen State Pedagogical University of Russia, 191186, 48 Moyka Embankment, Saint Petersburg, Russia
| | - N E Ivanushkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Jangsantear
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - A Justo
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - A V Kachalkin
- Lomonosov Moscow State University (MSU), 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - S Kato
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - P Khamsuntorn
- Microbe Interaction and Ecology Laboratory (BMIE), National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - I Y Kirtsideli
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D G Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - G A Kochkina
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - O Koukol
- Department of Botany, Charles University, Faculty of Science, Benátská 2, 128 01 Prague 2, Czech Republic
| | - G M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - T K A Kumar
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - I Kušan
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T Læssøe
- Globe Inst./Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark, Denmark
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 461, SE40530 Göteborg, Sweden
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - G Levicán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | | | - P Marinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - E G Lukina
- Saint Petersburg State University, 199034, 7-9 Universitetskaya emb., St. Petersburg, Russia
| | - V Magaña-Dueñas
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | | | - E F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - V F Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - B Martín
- Servicio Territorial de Agricultura, Ganadería y Desarrollo Rural de Zamora, C/ Prado Tuerto 17, 49019 Zamora, Spain
| | - M P Martín
- Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - N Matočec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane 4001, Australia
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A Mešić
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - P Mironova
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - P-A Moreau
- Université de Lille, Faculté de pharmacie de Lille, EA 4483, F-59000 Lille, France
| | - A Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - K Müller
- Falkstraße 103, D-47058 Duisburg, Germany
| | - L G Nagy
- Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network, Temesvári blvd. 62, H-6726 Szeged, Hungary
| | - S Nanu
- Department of Botany, The Zamorin's Guruvayurappan College, Kozhikode, Kerala, India
| | - A Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - W J Nel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - T H Nguyen
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - T F Nóbrega
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - M E Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - I Olariaga
- Rey Juan Carlos University, Dep. Biology and Geology, Physics and Inorganic Chemistry, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - B E Overton
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - S M Ozerskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - P Palani
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - F Pancorbo
- Sociedad Micológica de Madrid, Real Jardín Botánico, C/ Claudio Moyano 1, 28014 Madrid, Spain
| | - V Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, Ménesi út 44. H-1118 Budapest, Hungary
| | - J Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T Q Pham
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - C Phosri
- Biology programme, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, 48000, Thailand
| | - E S Popov
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - A Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
- Fitolab - Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - A Pošta
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - K Reschke
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 13, 60439 Frankfurt am Main, Germany
| | - M Reul
- Ostenstraße 19, D-95615 Marktredwitz, Germany
| | - G M Ricci
- 205 East Campus Science Center, Lock Haven University, Department of Biology, Lock Haven, PA 17745, USA
| | - A Rodríguez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - J Romanowski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - N Ruchikachorn
- The Institute for the Promotion of Teaching Science and Technology, Bangkok, 10110, Thailand
| | - I Saar
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila Street 14A, 50411 Tartu, Estonia
| | - A Safi
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - B Sakolrak
- Forest and Plant Conservation Research Office, Department of National Parks, Wildlife and Plant Conservation, Chatuchak District, Bangkok, Thailand
| | - F Salzmann
- Kloosterweg 5, 6301WK, Valkenburg a/d Geul, The Netherlands
| | - M Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Sangwichein
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - L Sanhueza
- Facultad de Estudios Interdisciplinarios, Núcleo de Química y Bioquímica, Universidad Mayor, Santiago, Chile
| | - T Sato
- Department of Agro-Food Science, Niigata Agro-Food University, 2416 Hiranedai, Tainai, Niigata Prefecture, Japan
| | - A Sastoque
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - B Senn-Irlet
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - A Shibata
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - K Siepe
- Geeste 133, D-46342 Velen, Germany
| | - S Somrithipol
- Plant Microbe Interaction Research Team (APMT), BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani Thailand
| | - M Spetik
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - P Sridhar
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, India
| | - A M Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - K Stuskova
- Mendeleum - Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valticka 334, Lednice, 69144, Czech Republic
| | - N Suwannasai
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - Y P Tan
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - I Tiago
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - S Tiwari
- National Fungal Culture Collection of India (NFCCI)
- Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, Maharashtra, India
| | - Z Tkalčec
- Laboratory for Biological Diversity, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M A Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - C Tonegawa
- Department of Clinical Plant Science, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - H X Tran
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Ward, Bac Tu Liem District, Hanoi City, Vietnam
| | - N T Tran
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park 4102, Queensland, Australia
| | - J Trovão
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - V E Trubitsyn
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, pr. Nauki, 5, Russia
| | - J Van Wyk
- Department of Plant Soil and Microbial Sciences, 1066 Bogue Street, Michigan State University, East Lansing, MI, 48824 USA
| | - W A S Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - J Vila
- Passatge del Torn, 4, 17800 Olot, Spain
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy
| | - S V Volobuev
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376, 2 Prof. Popov Str., Saint Petersburg, Russia
| | - D T Vu
- Research Planning and International Cooperation Department, Plant Resources Center, An Khanh, Hoai Duc, Hanoi 152900, Vietnam
| | - N Wangsawat
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 Thailand
| | - T Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - E Ercole
- Via Murazzano 11, I-10141, Torino (TO), Italy
| | - B W Ferreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - A P de Souza
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - B S Vieira
- Laboratório de Microbiologia e Fitopatologia, Universidade Federal de Uberlândia, Monte Carmelo, 38500-000, MG, Brazil
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
21
|
Foliar Endophytic Fungi from the Endangered Eastern Mountain Avens ( Geum peckii, Rosaceae) in Canada. PLANTS 2021; 10:plants10051026. [PMID: 34065394 PMCID: PMC8161203 DOI: 10.3390/plants10051026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/23/2022]
Abstract
Eastern Mountain Avens (Geum peckii Pursh, Rosaceae) is a globally rare and endangered perennial plant found only at two coastal bogs within Digby County (Nova Scotia, Canada) and at several alpine sites in the White Mountains of New Hampshire (USA). In Canada, the G. peckii population has declined over the past forty years due in part to habitat degradation. We investigated the culturable foliar fungi present in G. peckii leaves at five locations with varying degrees of human impact within this plant species’ Canadian range. Fungal identifications were made using ITS rDNA barcoding of axenic fungal cultures isolated from leaf tissue. Differences in foliar fungal communities among sites were documented, with a predominance of Gnomoniaceae (Class: Sordariomycetes, Phylum: Ascomycota). Habitats with more human impact showed lower endophytic diversities (10–16 species) compared to the pristine habitat (27 species). Intriguingly, several fungi may represent previously unknown taxa. Our work represents a significant step towards understanding G. peckii’s mycobiome and provides relevant data to inform conservation of this rare and endangered plant.
Collapse
|
22
|
Kwaśna H, Szewczyk W, Baranowska M, Gallas E, Wiśniewska M, Behnke-Borowczyk J. Mycobiota Associated with the Vascular Wilt of Poplar. PLANTS 2021; 10:plants10050892. [PMID: 33925219 PMCID: PMC8146881 DOI: 10.3390/plants10050892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023]
Abstract
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.
Collapse
Affiliation(s)
- Hanna Kwaśna
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
- Correspondence:
| | - Wojciech Szewczyk
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Marlena Baranowska
- Department of Silviculture, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625 Poznań, Poland;
| | - Ewa Gallas
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Milena Wiśniewska
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| | - Jolanta Behnke-Borowczyk
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (W.S.); (E.G.); (M.W.); (J.B.-B.)
| |
Collapse
|
23
|
Yang JH, Oh SY, Kim W, Woo JJ, Kim H, Hur JS. Effect of Isolation Conditions on Diversity of Endolichenic Fungal Communities from a Foliose Lichen, Parmotrema tinctorum. J Fungi (Basel) 2021; 7:jof7050335. [PMID: 33926112 PMCID: PMC8146534 DOI: 10.3390/jof7050335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022] Open
Abstract
Endolichenic fungi (ELF) are emerging novel bioresources because their diverse secondary metabolites have a wide range of biological activities. Metagenomic analysis of lichen thalli demonstrated that the conventional isolation method of ELF covers a very limited range of ELF, and the development of an advanced isolation method is needed. The influence of four variables were investigated in this study to determine the suitable conditions for the isolation of more diverse ELF from a radially growing foliose lichen, Parmotrema tinctorum. Four variables were tested: age of the thallus, severity of surface-sterilization of the thallus, size of a thallus fragment for the inoculation, and nutrient requirement. In total, 104 species (1885 strains) of ELF were isolated from the five individual thalli of P. tinctorum collected at five different places. Most of the ELF isolates belong to Sordariomycetes. Because each part of lichen thallus (of different age) has unique ELF species, the whole thallus of the foliose lichen is needed to isolate diverse ELF. Moderate sterilization is appropriate for the isolation of diverse ELF. Inoculation of small fragment (1 mm2) of lichen thallus resulted in the isolation of highest diversity of ELF species compared to larger fragments (100 and 25 mm2). Moreover, ELF species isolated from the small thallus fragments covered all ELF taxa detected from the medium and the large fragments in this study. The use of two media—Bold’s basal medium (nutrient poor) and potato dextrose agar (nutrient rich)—supported the isolation of diverse ELF. Among the tested variables, size of thallus fragment more significantly influenced the isolation of diverse ELF than other three factors. Species composition and richness of ELF communities from different lichen thalli differed from each other in this study.
Collapse
Affiliation(s)
- Ji Ho Yang
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; (J.H.Y.); (W.K.); (J.-J.W.); (H.K.)
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, 20 Changwondaehak-ro, Changwon 51140, Korea;
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; (J.H.Y.); (W.K.); (J.-J.W.); (H.K.)
| | - Jung-Jae Woo
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; (J.H.Y.); (W.K.); (J.-J.W.); (H.K.)
| | - Hyeonjae Kim
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; (J.H.Y.); (W.K.); (J.-J.W.); (H.K.)
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, 255 Jungang-Ro, Suncheon 57922, Korea; (J.H.Y.); (W.K.); (J.-J.W.); (H.K.)
- Correspondence: ; Tel.: +82-61-750-3383
| |
Collapse
|
24
|
Fungal Planet description sheets: 1112-1181. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 45:251-409. [PMID: 34456379 PMCID: PMC8375349 DOI: 10.3767/persoonia.2020.45.10] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Austroboletus asper on soil, Cylindromonium alloxyli on leaves of Alloxylon pinnatum, Davidhawksworthia quintiniae on leaves of Quintinia sieberi, Exophiala prostantherae on leaves of Prostanthera sp., Lactifluus lactiglaucus on soil, Linteromyces quintiniae (incl. Linteromyces gen. nov.) on leaves of Quintinia sieberi, Lophotrichus medusoides from stem tissue of Citrus garrawayi, Mycena pulchra on soil, Neocalonectria tristaniopsidis (incl. Neocalonectria gen. nov.) and Xyladictyochaeta tristaniopsidis on leaves of Tristaniopsis collina, Parasarocladium tasmanniae on leaves of Tasmannia insipida, Phytophthora aquae-cooljarloo from pond water, Serendipita whamiae as endophyte from roots of Eriochilus cucullatus, Veloboletus limbatus (incl. Veloboletus gen. nov.) on soil. Austria, Cortinarius glaucoelotus on soil. Bulgaria, Suhomyces rilaensis from the gut of Bolitophagus interruptus found on a Polyporus sp. Canada, Cantharellus betularum among leaf litter of Betula, Penicillium saanichii from house dust. Chile, Circinella lampensis on soil, Exophiala embothrii from rhizosphere of Embothrium coccineum.China, Colletotrichum cycadis on leaves of Cycas revoluta.Croatia, Phialocephala melitaea on fallen branch of Pinus halepensis. Czech Republic, Geoglossum jirinae on soil, Pyrenochaetopsis rajhradensis from dead wood of Buxus sempervirens.Dominican Republic, Amanita domingensis on litter of deciduous wood, Melanoleuca dominicana on forest litter. France, Crinipellis nigrolamellata (Martinique) on leaves of Pisonia fragrans, Talaromyces pulveris from bore dust of Xestobium rufovillosum infesting floorboards. French Guiana, Hypoxylon hepaticolor on dead corticated branch. Great Britain, Inocybe ionolepis on soil. India, Cortinarius indopurpurascens among leaf litter of Quercus leucotrichophora.Iran, Pseudopyricularia javanii on infected leaves of Cyperus sp., Xenomonodictys iranica (incl. Xenomonodictys gen. nov.) on wood of Fagus orientalis.Italy, Penicillium vallebormidaense from compost. Namibia, Alternaria mirabibensis on plant litter, Curvularia moringae and Moringomyces phantasmae (incl. Moringomyces gen. nov.) on leaves and flowers of Moringa ovalifolia, Gobabebomyces vachelliae (incl. Gobabebomyces gen. nov.) on leaves of Vachellia erioloba, Preussia procaviae on dung of Procavia capensis.Pakistan, Russula shawarensis from soil on forest floor. Russia, Cyberlindnera dauci from Daucus carota. South Africa, Acremonium behniae on leaves of Behnia reticulata, Dothiora aloidendri and Hantamomyces aloidendri (incl. Hantamomyces gen. nov.) on leaves of Aloidendron dichotomum, Endoconidioma euphorbiae on leaves of Euphorbia mauritanica, Eucasphaeria proteae on leaves of Protea neriifolia, Exophiala mali from inner fruit tissue of Malus sp., Graminopassalora geissorhizae on leaves of Geissorhiza splendidissima, Neocamarosporium leipoldtiae on leaves of Leipoldtia schultzii, Neocladosporium osteospermi on leaf spots of Osteospermum moniliferum, Neometulocladosporiella seifertii on leaves of Combretum caffrum, Paramyrothecium pituitipietianum on stems of Grielum humifusum, Phytopythium paucipapillatum from roots of Vitis sp., Stemphylium carpobroti and Verrucocladosporium carpobroti on leaves of Carpobrotus quadrifolius, Suttonomyces cephalophylli on leaves of Cephalophyllum pilansii. Sweden, Coprinopsis rubra on cow dung, Elaphomyces nemoreus from deciduous woodlands. Spain, Polyscytalum pini-canariensis on needles of Pinus canariensis, Pseudosubramaniomyces septatus from stream sediment, Tuber lusitanicum on soil under Quercus suber.Thailand, Tolypocladium flavonigrum on Elaphomyces sp. USA, Chaetothyrina spondiadis on fruits of Spondias mombin, Gymnascella minnisii from bat guano, Juncomyces patwiniorum on culms of Juncus effusus, Moelleriella puertoricoensis on scale insect, Neodothiora populina (incl. Neodothiora gen. nov.) on stem cankers of Populus tremuloides, Pseudogymnoascus palmeri from cave sediment. Vietnam, Cyphellophora vietnamensis on leaf litter, Tylopilus subotsuensis on soil in montane evergreen broadleaf forest. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|
25
|
Dark Septate Endophytic Fungi Associated with Sugarcane Plants Cultivated in São Paulo, Brazil. DIVERSITY 2020. [DOI: 10.3390/d12090351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dark septate endophytes (DSEs) constitute a polyphyletic group within the Ascomycota, with global distribution and a wide range of host plant species. The present study evaluated the diversity of DSE in sugarcane roots of the varieties RB867515, RB966928, and RB92579, and four varieties of not commercialized energy cane. A total of 16 DSE strains were isolated, mostly from the varieties RB966928 and RB867515, with six and five isolates, respectively. Just one of the four energy cane varieties had fungi with DSE appearance. The analyses of the DNA sequences from the internal transcribed spacer (ITS) and the large subunit (LSU), in association with the micromorphology of the isolates, allowed the differentiation of the 16 isolates in at least five species, within the families Periconiaceae, Pleosporaceae, Lentitheciaceae, Vibrisseaceae, and Apiosporaceae and the orders Pleosporales, Helotiales, and Xylariales. The order Pleosporales represented 80% of the isolates, and the species Periconia macrospinosa, with six isolates, accounted for the highest isolation frequency. The results confirm the natural occurrence of the DSE symbiosis in sugarcane varieties and the generalist character of these fungi as some of the detected species have already been reported associated with other host plants, ecosystems, and regions of the world.
Collapse
|
26
|
Fungal Planet description sheets: 1042-1111. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:301-459. [PMID: 33116344 PMCID: PMC7567971 DOI: 10.3767/persoonia.2020.44.11] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|