1
|
Wang Z, Cheng L, Sun Y, Wei X, Cai B, Liao L, Zhang Y, Zhao XZ. Enhanced Isolation of Fetal Nucleated Red Blood Cells by Enythrocyte-Leukocyte Hybrid Membrane-Coated Magnetic Nanoparticles for Noninvasive Pregnant Diagnostics. Anal Chem 2020; 93:1033-1042. [PMID: 33296189 DOI: 10.1021/acs.analchem.0c03933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fetal nucleated red blood cells (fNRBCs) in maternal peripheral blood containing the whole genetic information of the fetus may serve for noninvasive pregnant diagnostics (NIPD). However, the fetal cell-based NIPD is seriously limited by the poor purity of the isolated fNRBCs. Recently, the biomimetic cell membrane-camouflaged nanoparticles containing outstanding features have been widely used to detect and isolate rare cells from the peripheral blood samples. In this work, enythrocyte (RBC) and leukocyte (WBC) membranes are fused and coated onto magnet nanoparticles and then modified with anti-CD147 to isolate fNRBCs from the maternal peripheral blood with significant efficiency (∼90%) and purity (∼87%) in simulated spiked blood samples. Further, fNRBCs were isolated and identified from a series of maternal peripheral blood samples coming from pregnant women of 11-13 gestational weeks, and different chromosomal aneuploidies were diagnosed using fNRBCs isolated from maternal blood in early pregnancy. Our strategy may offer additional opportunity to overcome the limitations of current cell-based NIPD platforms.
Collapse
Affiliation(s)
- Zixiang Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lin Cheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Wei
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Liao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yuanzhen Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Wang Z, Cheng L, Wei X, Cai B, Sun Y, Zhang Y, Liao L, Zhao XZ. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed Microdevices 2020; 22:75. [PMID: 33079273 DOI: 10.1007/s10544-020-00531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Being easy, safe and reliable, non-invasive prenatal diagnosis (NIPD) has been greatly pursued in recent years. Holding the complete genetic information of the fetus, fetal nucleated red blood cells (fNRBCs) are viewed as a suitable target for NIPD application. However, effective separating fNRBCs from maternal peripheral blood for clinic use still faces great challenges, given that fNRBCs are extremely rare in maternal blood circulation. Here, by combining the high-throughput inertial microfluidic chip with multifunctional microspheres as size amplification, we develop a novel method to isolate fNRBCs with high performance. To enlarge the size difference between fNRBCs and normal blood cells, we use the gelatin coated microspheres to capture fNRBCs with anti-CD147 as specific recognizer at first. The size difference between fNRBCs captured by the microspheres and normal blood cells makes it easy to purify the captured fNRBCs through the spiral microfluidic chip. Finally, the purified fNRBCs are mildly released from the microspheres by enzymatically degrading the gelatin coating. Cell capture efficiency about 81%, high purity of 83%, as well as cell release viability over 80% were achieved using spiked samples by this approach. Additionally, fNRBCs were successfully detected from peripheral blood of pregnant women with an average of 24 fNRBCs per mL, suggesting the great potential of this method for clinical non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Zixiang Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| | - Lei Liao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Wei X, Ao Z, Cheng L, He Z, Huang Q, Cai B, Rao L, Meng Q, Wang Z, Sun Y, Liu W, Zhang Y, Guo S, Guo F, Zhao XZ. Highly sensitive and rapid isolation of fetal nucleated red blood cells with microbead-based selective sedimentation for non-invasive prenatal diagnostics. NANOTECHNOLOGY 2018; 29:434001. [PMID: 30087212 DOI: 10.1088/1361-6528/aad8c4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-invasive prenatal diagnostics (NIPD) has been an emerging field for prenatal diagnosis research. Carrying the whole genome coding of the fetus, fetal nucleated red blood cells (FNRBCs) have been pursued as a surrogate biomarker traveling around in maternal blood. Here, by combining a unique microbead-based centrifugal separation and enzymatic release, we demonstrated a novel method for FNRBC isolation from the blood samples. First, the gelatin-coated silica microbeads were modified with FNRBC-specific antibody (anti-CD147) to capture the target cells in the blood samples. Then, the density difference between microbead-bound FNRBCs and normal blood cells enables the purification of FNRBCs via an improved high-density percoll-based separation. The non-invasive release of FNRBCs can then be achieved by enzymatically degrading the gelatin film on the surface of the microbeads, allowing a gentle release of the captured target cells with as high as 84% efficiency and ∼80% purity. We further applied it to isolate fetal cells from maternal peripheral blood. The released cells were analyzed by real-time polymerase chain reaction to verify their fetal origin and fluorescent in situ hybridization to detect fetal chromosome disorders. This straightforward and reliable alternative platform for FNRBC detection may have the potential for realizing facile NIPD.
Collapse
Affiliation(s)
- Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Günel T, Hosseini MK, Gümüşoğlu E, Zeybek G, Dölekçap İ, Kalelioğlu İ, Benian A, Ermiş H, Aydınlı K. Current approaches on non-invasive prenatal diagnosis: Prenatal genomics, transcriptomics, personalized fetal diagnosis. Turk J Obstet Gynecol 2014; 11:233-241. [PMID: 28913027 PMCID: PMC5558368 DOI: 10.4274/tjod.26817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/26/2014] [Indexed: 12/27/2022] Open
Abstract
Recent developments in molecular genetics improved our knowledge on fetal genome and physiology. Novel scientific innovations in prenatal diagnosis have accelerated in the last decade changing our vision immensely. Data obtained from fetal genomic studies brought new insights to fetal medicine and by the advances in fetal DNA and RNA sequencing technology novel treatment strategies has evolved. Non-invasive prenatal diagnosis found ground in genetics and the results are widely studied in scientific arena. When Lo and colleges proved fetal genetic material can be extracted from maternal plasma and fetal DNA can be isolated from maternal serum, the gate to many exciting discoveries was open. Microarray technology and advances in sequencing helped fetal diagnosis as well as other areas of medicine. Today it is a very crucial prerequisite for physicians practicing prenatal diagnosis to have a profound knowledge in genetics. Prevailing practical use and application of fetal genomic tests in maternal and fetal medicine mandates obstetricians to update their knowledge in genetics. The purpose of this review is to assist physicians to understand and update their knowledge in fetal genetic testing from maternal blood, individualized prenatal counseling and advancements on the subject by sharing our experiences as İstanbul University Fetal Nucleic Acid Research Group.
Collapse
Affiliation(s)
- Tuba Günel
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Mohammad Kazem Hosseini
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Ece Gümüşoğlu
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - Görkem Zeybek
- Çanakkale Provincial State Hospital, Clinic of General Obstetrics and Gynecology, Çanakkale, Turkey
| | - İsmail Dölekçap
- İstanbul University, Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Turkey
| | - İbrahim Kalelioğlu
- İstanbul University İstanbul Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | - Ali Benian
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | - Hayri Ermiş
- İstanbul University İstanbul Faculty of Medicine, Department of Gynecology, İstanbul, Turkey
| | | |
Collapse
|
5
|
Gekas J, Langlois S, Ravitsky V, Audibert F, van den Berg DG, Haidar H, Rousseau F. Identification of trisomy 18, trisomy 13, and Down syndrome from maternal plasma. APPLICATION OF CLINICAL GENETICS 2014; 7:127-31. [PMID: 25053891 PMCID: PMC4104725 DOI: 10.2147/tacg.s35602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current prenatal diagnosis for fetal aneuploidies (including trisomy 21 [T21]) generally relies on an initial biochemical serum-based noninvasive prenatal testing (NIPT) after which women who are deemed to be at high risk are offered an invasive confirmatory test (amniocentesis or chorionic villi sampling for a fetal karyotype), which is associated with a risk of fetal miscarriage. Recently, genomics-based NIPT (gNIPT) was proposed for the analysis of fetal genomic DNA circulating in maternal blood. The diffusion of this technology in routine prenatal care could be a major breakthrough in prenatal diagnosis, since initial research studies suggest that this novel approach could be very effective and could reduce substantially the number of invasive procedures. However, the limitations of gNIPT may be underappreciated. In this review, we examine currently published literature on gNIPT to highlight advantages and limitations. At this time, the performance of gNIPT is relatively well-documented only in high-risk pregnancies for T21 and trisomy 18. This additional screening test may be an option for women classified as high-risk of aneuploidy who wish to avoid invasive diagnostic tests, but it is crucial that providers carefully counsel patients about the test's advantages and limitations. The gNIPT is currently not recommended as a first-tier prenatal screening test for T21. Since gNIPT is not considered as a diagnostic test, a positive gNIPT result should always be confirmed by an invasive test, such as amniocentesis or chorionic villus sampling. Validation studies are needed to optimally introduce this technology into the existing routine workflow of prenatal care.
Collapse
Affiliation(s)
- Jean Gekas
- Prenatal Diagnosis Unit, Department of Medical Genetics and Pediatrics, Faculty of Medicine, Laval University, Québec City, Quebec, Canada ; Department of Medical Biology, Centre Hospitalier Universitaire de Québec, Québec City, Quebec, Canada
| | - Sylvie Langlois
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Vardit Ravitsky
- Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - François Audibert
- Department of Obstetrics and Gynecology, Sainte Justine Hospital, Montreal, Canada
| | - David-Gradus van den Berg
- Department of Social and Preventive Medicine, Faculty of Medicine, Laval University, Québec City, Quebec, Canada
| | - Hazar Haidar
- Bioethics Program, Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Canada
| | - François Rousseau
- Department of Medical Biology, Centre Hospitalier Universitaire de Québec, Québec City, Quebec, Canada ; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec City, Quebec, Canada
| |
Collapse
|
6
|
Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum Genet 2013; 133:743-53. [PMID: 24362460 DOI: 10.1007/s00439-013-1407-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/06/2013] [Indexed: 02/01/2023]
Abstract
Trisomy 21 (Down syndrome, DS) is the most common human genetic anomaly associated with heart defects. Based on evolutionary conservation, DS-associated heart defects have been modeled in mice. By generating and analyzing mouse mutants carrying different genomic rearrangements in human chromosome 21 (Hsa21) syntenic regions, we found the triplication of the Tiam1-Kcnj6 region on mouse chromosome 16 (Mmu16) resulted in DS-related cardiovascular abnormalities. In this study, we developed two tandem duplications spanning the Tiam1-Kcnj6 genomic region on Mmu16 using recombinase-mediated genome engineering, Dp(16)3Yey and Dp(16)4Yey, spanning the 2.1 Mb Tiam1-Il10rb and 3.7 Mb Ifnar1-Kcnj6 regions, respectively. We found that Dp(16)4Yey/+, but not Dp(16)3Yey/+, led to heart defects, suggesting the triplication of the Ifnar1-Kcnj6 region is sufficient to cause DS-associated heart defects. Our transcriptional analysis of Dp(16)4Yey/+ embryos showed that the Hsa21 gene orthologs located within the duplicated interval were expressed at the elevated levels, reflecting the consequences of the gene dosage alterations. Therefore, we have identified a 3.7 Mb genomic region, the smallest critical genomic region, for DS-associated heart defects, and our results should set the stage for the final step to establish the identities of the causal gene(s), whose elevated expression(s) directly underlie this major DS phenotype.
Collapse
|
7
|
Evaluation of sample stability and automated DNA extraction for fetal sex determination using cell-free fetal DNA in maternal plasma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:195363. [PMID: 24222898 PMCID: PMC3814069 DOI: 10.1155/2013/195363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/24/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The detection of paternally inherited sequences in maternal plasma, such as the SRY gene for fetal sexing or RHD for fetal blood group genotyping, is becoming part of daily routine in diagnostic laboratories. Due to the low percentage of fetal DNA, it is crucial to ensure sample stability and the efficiency of DNA extraction. We evaluated blood stability at 4°C for at least 24 hours and automated DNA extraction, for fetal sex determination in maternal plasma. METHODS A total of 158 blood samples were collected, using EDTA-K tubes, from women in their 1st trimester of pregnancy. Samples were kept at 4°C for at least 24 hours before processing. An automated DNA extraction was evaluated, and its efficiency was compared with a standard manual procedure. The SRY marker was used to quantify cfDNA by real-time PCR. RESULTS Although lower cfDNA amounts were obtained by automated DNA extraction (mean 107,35 GE/mL versus 259,43 GE/mL), the SRY sequence was successfully detected in all 108 samples from pregnancies with male fetuses. CONCLUSION We successfully evaluated the suitability of standard blood tubes for the collection of maternal blood and assessed samples to be suitable for analysis at least 24 hours later. This would allow shipping to a central reference laboratory almost from anywhere in Europe.
Collapse
|
8
|
Maruotti GM, Frisso G, Calcagno G, Fortunato G, Castaldo G, Martinelli P, Sacchetti L, Salvatore F. Prenatal diagnosis of inherited diseases: 20 years’ experience of an Italian Regional Reference Centre. Clin Chem Lab Med 2013; 51:2211-7. [DOI: 10.1515/cclm-2013-0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 11/15/2022]
|
9
|
Non-invasive prenatal diagnosis of multiple endocrine neoplasia type 2A using COLD-PCR combined with HRM genotyping analysis from maternal serum. PLoS One 2012; 7:e51024. [PMID: 23236420 PMCID: PMC3517603 DOI: 10.1371/journal.pone.0051024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022] Open
Abstract
The multiple endocrine neoplasia type 2A (MEN2A) is a monogenic disorder characterized by an autosomal dominant pattern of inheritance which is characterized by high risk of medullary thyroid carcinoma in all mutation carriers. Although this disorder is classified as a rare disease, the patients affected have a low life quality and a very expensive and continuous treatment. At present, MEN2A is diagnosed by gene sequencing after birth, thus trying to start an early treatment and by reduction of morbidity and mortality. We first evaluated the presence of MEN2A mutation (C634Y) in serum of 25 patients, previously diagnosed by sequencing in peripheral blood leucocytes, using HRM genotyping analysis. In a second step, we used a COLD-PCR approach followed by HRM genotyping analysis for non-invasive prenatal diagnosis of a pregnant woman carrying a fetus with a C634Y mutation. HRM analysis revealed differences in melting curve shapes that correlated with patients diagnosed for MEN2A by gene sequencing analysis with 100% accuracy. Moreover, the pregnant woman carrying the fetus with the C634Y mutation revealed a melting curve shape in agreement with the positive controls in the COLD-PCR study. The mutation was confirmed by sequencing of the COLD-PCR amplification product. In conclusion, we have established a HRM analysis in serum samples as a new primary diagnosis method suitable for the detection of C634Y mutations in MEN2A patients. Simultaneously, we have applied the increase of sensitivity of COLD-PCR assay approach combined with HRM analysis for the non-invasive prenatal diagnosis of C634Y fetal mutations using pregnant women serum.
Collapse
|
10
|
Hillman SC, McMullan DJ, Williams D, Maher ER, Kilby MD. Microarray comparative genomic hybridization in prenatal diagnosis: a review. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2012; 40:385-391. [PMID: 22887694 DOI: 10.1002/uog.11180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2012] [Indexed: 06/01/2023]
Abstract
G-band chromosomal karyotyping of fetal cells obtained by invasive prenatal testing has been used since the 1960s to identify structural chromosomal anomalies. Prenatal testing is usually performed in response to parental request, increased risk of fetal chromosomal abnormality associated with advanced maternal age, a high-risk screening test and/or the presence of a congenital malformation identified by ultrasonography. The results of karyotyping may inform the long-term prognosis (e.g. aneuploidy being associated with a poor outcome or microscopic chromosomal anomalies predicting global neurodevelopmental morbidity). Relatively recent advances in microarray technology are now enabling high-resolution genome-wide evaluation for DNA copy number abnormalities (e.g. deletions or duplications). While such technological advances promise increased sensitivity and specificity they can also pose difficult challenges of interpretation and clinical management. This review aims to give interested clinicians without an extensive prior knowledge of microarray technology, an overview of its use in prenatal diagnosis, the literature to date, advantages, potential pitfalls and experience from our own tertiary center.
Collapse
Affiliation(s)
- S C Hillman
- School of Clinical and Experimental Medicine, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
11
|
Cell-free fetal nucleic acid testing: a review of the technology and its applications. Obstet Gynecol Surv 2012; 66:431-42. [PMID: 21944155 DOI: 10.1097/ogx.0b013e31822dfbe2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Cell-free fetal nucleic acids circulating in the blood of pregnant women afford the opportunity for early, noninvasive prenatal genetic testing. The predominance of admixed maternal genetic material in circulation demands innovative means for identification and analysis of cell-free fetal DNA and RNA. Techniques using polymerase chain reaction, mass spectrometry, and sequencing have been developed for the purposes of detecting fetal-specific sequences, such as paternally inherited or de novo mutations, or determining allelic balance or chromosome dosage. Clinical applications of these methods include fetal sex determination and blood group typing, which are currently available commercially although not offered routinely in the United States. Other uses of cell-free fetal DNA and RNA being explored are the detection of single-gene disorders, chromosomal abnormalities, and inheritance of parental polymorphisms across the whole fetal genome. The concentration of cell-free fetal DNA may also provide predictive capabilities for pregnancy-associated complications. The roles that cell-free fetal nucleic acid testing assume in the existing framework of prenatal screening and invasive diagnostic testing will depend on factors such as costs, clinical validity and utility, and perceived benefit-risk ratios for different applications. As cell-free fetal DNA and RNA testing continues to be developed and translated, significant ethical, legal, and social questions will arise that will need to be addressed by those with a stake in the use of this technology. TARGET AUDIENCE Obstetricians & Gynecologists and Family Physicians Learning Objectives: After participating in this activity, physicians should be better able to evaluate techniques and tools for analyzing cell-free fetal nucleic acids, assess clinical applications of prenatal testing, using cell-free fetal nucleic acids and barriers to implementation, and distinguish between relevant clinical features of cell-free fetal nucleic acid testing and existing prenatal genetic screening and diagnostic procedures.
Collapse
|
12
|
Abstract
Up to 3% of UK pregnancies will be affected by congenital abnormality. Prenatal diagnosis allows the parents to make informed decisions about their pregnancy, healthcare professionals to optimise the antenatal care and families prepare for the birth of the baby. There are many techniques employed which range from the non-invasive ultrasonography to the highly invasive amniocentesis. This review explores the methods currently available in the UK as well as considering the newer minimally-invasive technologies available including cell-free fetal DNA and pre-implantation genetic diagnosis.
Collapse
Affiliation(s)
- S L Collins
- The Fetal Medicine Unit, Women's Centre, The John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Kelly S, Farrimond H. Non-Invasive Prenatal Genetic Testing: A Study of Public Attitudes. Public Health Genomics 2012; 15:73-81. [DOI: 10.1159/000331254] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
|
14
|
Macher HC, Noguerol P, Medrano-Campillo P, Garrido-Márquez MR, Rubio-Calvo A, Carmona-González M, Martin-Sánchez J, Pérez-Simón JA, Guerrero JM. Standardization non-invasive fetal RHD and SRY determination into clinical routine using a new multiplex RT-PCR assay for fetal cell-free DNA in pregnant women plasma: results in clinical benefits and cost saving. Clin Chim Acta 2011; 413:490-4. [PMID: 22133782 DOI: 10.1016/j.cca.2011.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/08/2011] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Among negative RhD mothers it is essential to know the fetal RhD status in order to avoid the possibility of hemolytic disease of the newborn. In this regard, the detection of fetal DNA in maternal plasma might become a new diagnostic tool. In the current study, we have evaluated the standardization of a Multiplex-PCR targeted towards two exons of the RHD and one SRY gene to monitor RhD negative women. The current study addresses questions concerning feasibility and applicability of this approach into the clinical practice. MATERIALS AND METHODS Both single and multiplex real-time PCRs targeting RHD exons 5 and 7 and SRY were applied for the detection of fetal-specific RHD sequences and sex in maternal plasma. A large cohort of 2127 women was studied between 10 and 28 weeks of pregnancy. 134 of them were used for single TaqMan PCR studies and 1993 were evaluated using Multiplex TaqMan PCR studies. All of them were serologically typed as RhD negative according to Spanish guidelines. Single and multiplex real-time PCR results were compared with postnatal serology and sex identification. RESULTS There was a 100% concordance between results obtained with single and multiplex real-time PCR assays. At present, 1012 of the 1993 pregnant women studied gave birth and the results of RHD status obtained with the multiplex TaqMan PCR assay were confirmed postpartum by serological methods showing that sensitivity, specificity, and accuracy of the multiplex assay were 100, 98.6, and 99.3%, respectively. This procedure improved the speed of the assay, avoided over-treatment among RhD negative pregnant women bearing RhD negative fetus, and reduced the requirements for clinical and biological monitoring, resulting in a clinical benefit and cost saving. CONCLUSIONS The routine determination of fetal RHD status and SRY in maternal plasma, using multiplex real-time PCR, is feasible. The use of multiplex real-time PCR allows improving the response of the laboratory, saving time and reagent costs, opening the door to a complete automatization of the process.
Collapse
Affiliation(s)
- Hada C Macher
- Department of Clinical Biochemistry, The Virgen del Rocío University Hospital (IBiS/CSIC/SAS/University of Seville), Seville, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tounta G, Kolialexi A, Papantoniou N, Tsangaris GT, Kanavakis E, Mavrou A. Non-invasive prenatal diagnosis using cell-free fetal nucleic acids in maternal plasma: Progress overview beyond predictive and personalized diagnosis. EPMA J 2011. [PMID: 23199146 PMCID: PMC3405386 DOI: 10.1007/s13167-011-0085-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The discovery of circulating cell-free fetal DNA (cffDNA) in maternal plasma allowed for the development of alternative methodologies that may facilitate safe non-invasive prenatal diagnosis (NIPD). The low concentration of cffDNA in maternal plasma, however, and the coexistence of maternal DNA limit its clinical application to the detection or exclusion of fetal targets that are not present in the mother, such as Y chromosome sequences, the RHD gene in a RhD-negative woman and genetic conditions inherited from the father. Strategies for NIPD of monogenic disorders and fetal chromosomal aneuploidies have also been achieved using next-generation sequencing and could be introduced to the clinics as soon as cost-effective and high throughput protocols are developed.
Collapse
Affiliation(s)
- Georgia Tounta
- Department of Medical Genetics, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | |
Collapse
|
16
|
Lea DH, Skirton H, Read CY, Williams JK. Implications for Educating the Next Generation of Nurses on Genetics and Genomics in the 21st Century. J Nurs Scholarsh 2010; 43:3-12. [DOI: 10.1111/j.1547-5069.2010.01373.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Raymond FL, Whittaker J, Jenkins L, Lench N, Chitty LS. Molecular prenatal diagnosis: the impact of modern technologies. Prenat Diagn 2010; 30:674-81. [PMID: 20572117 DOI: 10.1002/pd.2575] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Originally prenatal diagnosis was confined to the diagnosis of metabolic disorders and depended on assaying enzyme levels in amniotic fluid. With the development of recombinant DNA technology, molecular diagnosis became possible for some genetic conditions late in the 1970s. Here we briefly review the history of molecular prenatal diagnostic testing, using Duchenne muscular dystrophy as an example, and describe how over the last 30 years we have moved from offering testing to a few affected individuals using techniques, such as Southern blotting to identify deletions, to more rapid and accurate PCR-based testing which identifies the precise change in dystrophin for a greater number of families. We discuss the potential for safer, earlier prenatal genetic diagnosis using cell free fetal DNA in maternal blood before concluding by speculating on how more recent techniques, such as next generation sequencing, might further impact on the potential for molecular prenatal testing. Progress is not without its challenges, and as cytogenetics and molecular genetics begin to unite into one, we foresee the main challenge will not be in identifying the genetic change, but rather in interpreting its significance, particularly in the prenatal setting where we frequently have no phenotype on which to base interpretation.
Collapse
Affiliation(s)
- F Lucy Raymond
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
18
|
Geifman-Holtzman O, Ober Berman J. Prenatal diagnosis: update on invasive versus noninvasive fetal diagnostic testing from maternal blood. Expert Rev Mol Diagn 2009; 8:727-51. [PMID: 18999924 DOI: 10.1586/14737159.8.6.727] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The modern obstetrics care includes noninvasive prenatal diagnosis testing such as first trimester screening performed between 11 and 14 weeks' gestation and second trimester screening performed between 15 and 20 weeks. In these screening tests, biochemical markers are measured in the maternal blood with or without ultrasound for fetal nuchal translucency with reported accuracy of up to 90%. Invasive procedures, including amniocentesis or chorionic villi sampling, are used to achieve over 99% accuracy. During these procedures direct fetal material is examined and, therefore, these tests are highly accurate with the caveat of a small risk for pregnancy loss. Much research now focuses on other noninvasive highly accurate and risk-free tests that will identify fetal material in the maternal blood. Fetal cells and fetal DNA/RNA provide fetal information but are hard to find in an overwhelming background of maternal cells and in the absence of specific fetal cell markers. The most experience has been accumulated with fetal rhesus and fetal sex determination from maternal blood, with an accuracy of up to 100% by using gene sequences that are absent from maternal blood. Although not clinically applicable yet, fetal cells, fetal DNA/RNA and fetal proteomics in combination with cutting edge technology are described to prenatally diagnose aneuploidies and single-gene disorders.
Collapse
Affiliation(s)
- Ossie Geifman-Holtzman
- Division of Reproductive Genetics and Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Temple University School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
19
|
Xia P, Radpour R, Kohler C, Dang CX, Cheng Fan AX, Holzgreve W, Zhong XY. A selected pre-amplification strategy for genetic analysis using limited DNA targets. Clin Chem Lab Med 2009; 47:288-93. [DOI: 10.1515/cclm.2009.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract: Limited DNA resources or limited DNA targets in predominant backgrounds for genetic tests can lead to misdiagnosis. We developed a strategy to selectively increase the amount of minor targets through a specific pre-amplification procedure.: We used the model of circulating cell free (ccf) male fetal DNA as a minor target in the predominant maternal plasma DNA to evaluate the strategy. The sex determining region (SRY) locus on the Y chromosome was used to identify ccf fetal DNA, and the human glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene was used to identify ccf total DNA in maternal plasma. We selectively pre-amplified the minor target SRY locus using the Expand Long Template PCR system and assessed the efficiency of the pre-amplification by real-time PCR, for both SRY and GAPDH, to compare the quantities of pre-amplified fetal DNA with those of maternal total DNA without pre-amplification.: The selected pre-amplification increased the amount of ccf fetal DNA dramatically (Wilcoxon test: p=0.000, the fold change=11,596). After selected pre-amplification, a proportion of 2.19% of the ccf fetal minor part in the predominant maternal component was changed up to 25,334%. The increased amounts of ccf fetal DNA found with the pre-amplification are not correlated to the amounts found without the procedure (r=−0.017, p=0.949).: This strategy may be useful in genetic analysis with limited DNA resources and limited DNA targets in predominant background molecules. However, this approach is not suitable for quantitative assessments, due to the fact that quantitative imbalanced amplification was observed as a result of the pre-amplification procedure.Clin Chem Lab Med 2009;47:288–93.
Collapse
|
20
|
Bustamante-Aragones A, Trujillo-Tiebas MJ, Gallego-Merlo J, Rodriguez de Alba M, Gonzalez-Gonzalez C, Cantalapiedra D, Ayuso C, Ramos C. Prenatal diagnosis of Huntington disease in maternal plasma: direct and indirect study. Eur J Neurol 2008; 15:1338-44. [DOI: 10.1111/j.1468-1331.2008.02312.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Wright CF, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 2008; 15:139-51. [PMID: 18945714 DOI: 10.1093/humupd/dmn047] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cell-free fetal nucleic acids (cffNA) can be detected in the maternal circulation during pregnancy, potentially offering an excellent method for early non-invasive prenatal diagnosis (NIPD) of the genetic status of a fetus. Using molecular techniques, fetal DNA and RNA can be detected from 5 weeks gestation and are rapidly cleared from the circulation following birth. METHODS We searched PubMed systematically using keywords free fetal DNA and NIPD. Reference lists from relevant papers were also searched to ensure comprehensive coverage of the area. RESULTS Cell-free fetal DNA comprises only 3-6% of the total circulating cell-free DNA, therefore diagnoses are primarily limited to those caused by paternally inherited sequences as well as conditions that can be inferred by the unique gene expression patterns in the fetus and placenta. Broadly, the potential applications of this technology fall into two categories: first, high genetic risk families with inheritable monogenic diseases, including sex determination in cases at risk of X-linked diseases and detection of specific paternally inherited single gene disorders; and second, routine antenatal care offered to all pregnant women, including prenatal screening/diagnosis for aneuploidy, particularly Down syndrome (DS), and diagnosis of Rhesus factor status in RhD negative women. Already sex determination and Rhesus factor diagnosis are nearing translation into clinical practice for high-risk individuals. CONCLUSIONS The analysis of cffNA may allow NIPD for a variety of genetic conditions and may in future form part of national antenatal screening programmes for DS and other common genetic disorders.
Collapse
|