1
|
Yang MJ, Song H, Shi P, Liang J, Hu Z, Zhou C, Hu PP, Yu ZL, Zhang T. Integrated mRNA and miRNA transcriptomic analysis reveals the response of Rapana venosa to the metamorphic inducer (juvenile oysters). Comput Struct Biotechnol J 2022; 21:702-715. [PMID: 36659925 PMCID: PMC9826900 DOI: 10.1016/j.csbj.2022.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Metamorphosis, as a critical developmental event, controls the population dynamics of most marine invertebrates, especially some carnivorous gastropods that feed on bivalves, whose population dynamics not only affect the maintenance of the ecological balance but also impact the protection of bivalve resources; therefore, the metamorphosis of carnivorous gastropods deserve attention. Here, we investigated the mechanism underlying the response of the carnivorous gastropod Rapana venosa to its metamorphic inducer juvenile oysters through integrated analysis of miRNA and mRNA profiles. According to the results, we speculated that the AMPK signaling pathway may be the critical regulator in the response to juvenile oysters in R. venosa competent larvae. The NF-kB and JAK-STAT signaling pathways that regulated apoptosis were also activated by the metamorphic inducer, which may result in the degeneration of the velum. Additionally, the significant changes in the expression of the SARP-19 precursor gene and protein cibby homolog 1-like gene may indicate that these signaling pathways also regulate growth and development during metamorphosis. This study provides further evidence that juvenile oysters can induce metamorphosis of R. venosa at the transcriptional level, which expands our understanding of the metamorphosis mechanism in carnivorous gastropods.
Collapse
Affiliation(s)
- Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jian Liang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Peng-Peng Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,University of Chinese Academy of Sciences, Beijing 100049, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Laboratory for Marine Science and Technology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China,CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China,Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China,Correspondence to: 7 Nanhai Road, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Chen J, Zhai Z, Lu L, Li S, Guo D, Bai L, Yu D. Identification and Characterization of miRNAs and Their Predicted mRNAs in the Larval Development of Pearl Oyster Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:303-319. [PMID: 35353261 DOI: 10.1007/s10126-022-10105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
As an important economic shellfish, the pearl oyster, Pinctada fucata, and its larvae are an ideal model for studying molecular mechanisms of larval development in invertebrates. Larval development directly affects the quantity and quality of pearl oysters. MicroRNAs (miRNAs) may play important roles in development, but the effects of miRNA expression on P. fucata early development remain unknown. In this study, miRNA and mRNA transcriptomics of seven different P. fucata developmental stages were analyzed using Illumina RNA sequencing. A total of 329 miRNAs, including 87 known miRNAs and 242 novel miRNAs, and 33,550 unigenes, including 26,333 known genes and 7217 predicted new genes, were identified in these stages. A cluster analysis showed that the difference in the numbers of miRNAs was greatest between fertilized eggs and trochophores. In addition, the integrated mRNA transcriptome was used to predict target genes for differentially expressed miRNAs between adjacent developmental stages, and the target genes were subjected to a gene ontology enrichment analysis. Using the gene ontology annotation, 100 different expressed genes and 95 differentially expressed miRNAs were identified as part of larval development regulation. Real-time PCR was used to identify eight mRNAs and three miRNAs related to larval development. The present findings will be helpful for further clarifying the regulatory mechanisms of miRNA in invertebrate larval development.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Ziqin Zhai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lili Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Suping Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Dan Guo
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| |
Collapse
|
3
|
Pereiro P, Moreira R, Novoa B, Figueras A. Differential Expression of Long Non-Coding RNA (lncRNA) in Mediterranean Mussel ( Mytilus galloprovincialis) Hemocytes under Immune Stimuli. Genes (Basel) 2021; 12:genes12091393. [PMID: 34573375 PMCID: PMC8468332 DOI: 10.3390/genes12091393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
The Mediterranean mussel is one of the most economically relevant bivalve mollusk species in Europe and China. The absence of massive mortalities and their resistance to pathogens affecting other cultured bivalves has been under study in recent years. The transcriptome response of this species to different immune stimuli has been extensively studied, and even the complexity of its genome, which has recently been sequenced, has been suggested as one of the factors contributing to this resistance. However, studies concerning the non-coding RNA profiles remain practically unexplored-especially those corresponding to the lncRNAs. To the best of our knowledge, this is the second characterization and study of lncRNAs in this bivalve species. In this work, we identified the potential repertoire of lncRNAs expressed in mussel hemocytes, and using RNA-Seq we analyzed the lncRNA profile of mussel hemocytes stimulated in vitro with three different immune stimuli: LPS, poly I:C, and β-glucans. Compared to unstimulated hemocytes, LPS induced the highest modulation of lncRNAs, whereas poly I:C and β-glucans induced a similar discrete response. Based on the potential cis-regulatory activity of the lncRNAs, we identified the neighboring protein-coding genes of the regulated lncRNAs to estimate-at least partially-the processes in which they are implicated. After applying correlation analyses, it seems that-especially for LPS-the lncRNAs could participate in the regulation of gene expression, and substantially contribute to the immune response.
Collapse
|
4
|
Rosani U, Bortoletto E, Bai CM, Novoa B, Figueras A, Venier P, Fromm B. Digging into bivalve miRNAomes: between conservation and innovation. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200165. [PMID: 33813895 PMCID: PMC8059956 DOI: 10.1098/rstb.2020.0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bivalves are a diverse mollusc group of economic and ecological importance. An evident resilience to pollution, parasites and extreme environments makes some bivalve species important models for studying adaptation and immunity. Despite substantial progress in sequencing projects of bivalves, information on non-coding genes and gene-regulatory aspects is still lacking. Here, we review the current repertoire of bivalve microRNAs (miRNAs), important regulators of gene expression in Metazoa. We exploited available short non-coding RNA (sncRNA) data for Pinctada martensii, Crassostrea gigas, Corbicula fluminea, Tegillarca granosa and Ruditapes philippinarum, and we produced new sncRNA data for two additional bivalves, the Mediterranean mussel Mytilus galloprovincialis and the blood clam Scapharca broughtonii. We found substantial heterogeneity and incorrect annotations of miRNAs; hence, we reannotated conserved miRNA families using recently established criteria for bona fide microRNA annotation. We found 106 miRNA families missing in the previously published bivalve datasets and 89 and 87 miRNA complements were identified in the two additional species. The overall results provide a homogeneous and evolutionarily consistent picture of miRNAs in bivalves and enable future comparative studies. The identification of two bivalve-specific miRNA families sheds further light on the complexity of transcription and its regulation in bivalve molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, People's Republic of China
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Paola Venier
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
5
|
Ding J, Wen Q, Huo Z, Nie H, Qin Y, Yan X. Identification of shell-color-related microRNAs in the Manila clam Ruditapes philippinarum using high-throughput sequencing of small RNA transcriptomes. Sci Rep 2021; 11:8044. [PMID: 33850162 PMCID: PMC8044141 DOI: 10.1038/s41598-021-86727-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 12/02/2022] Open
Abstract
Shell-color polymorphism is a common phenomenon in several mollusk species and has been associated with thermal capacity, developmental stability, shell strength, and immunity. Shell-color polymorphism has been related to the differential expression of genes in several signal transduction pathways; however, the functions of micro-RNAs (miRNAs) in shell-color formation remain unclear. In the present study, we compared high-quality, small-RNA transcriptomes in three strains of the Manila clam Ruditapes philippinarum with specific shell-color patterns, artificially selected for six generations. Totals of 114 known and 208 novel miRNAs were identified by high-throughput sequencing, of which nine known and one novel miRNA were verified by stem-loop quantitative real time-polymerase chain reaction. Predicted miRNA targets were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. miR-137 and miR-216b and the Hedgehog signaling pathway and Wnt signaling pathway were identified as being potentially involved in pigment formation and regulation in R. philippinarum. These results may help to clarify the role of miRNAs in shell coloration and shed light on the mechanisms regulating color formation in bivalve shells.
Collapse
Affiliation(s)
- Jianfeng Ding
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Qiang Wen
- Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Hongtao Nie
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Yanjie Qin
- Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China
| | - Xiwu Yan
- Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China.
| |
Collapse
|
6
|
Huang S, Yoshitake K, Asaduzzaman M, Kinoshita S, Watabe S, Asakawa S. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol 2021; 18:1702-1715. [PMID: 33356816 DOI: 10.1080/15476286.2020.1867798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small non-coding RNAs play a pivotal role in gene regulation, repression of transposable element and viral activity in various organisms. Among the various categories of these small non-coding RNAs, microRNAs (miRNAs) guide post-translational gene regulation in cellular development, proliferation, apoptosis, oncogenesis, and differentiation. Here, we performed a genome-wide computational prediction of miRNAs to improve the understanding of miRNA observation and function in molluscs. As an initial step, hundreds of conserved miRNAs were predicted in 35 species of molluscs through genome scanning. Afterwards, the miRNAs' population, isoforms, organization, and function were characterized in detail. Furthermore, the key miRNA biogenesis factors, including AGO2, DGCR8, DICER, DROSHA, TRABP2, RAN, and XPO5, were elucidated based on homologue sequence searching. We also summarized the miRNAs' function in biomineralization, immune and stress response, as well as growth and development in molluscs. Because miRNAs play a vital role in various lifeforms, this study will provide insight into miRNA biogenesis and function in molluscs, as well as other invertebrates.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Asaduzzaman
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Zhang Y, Jiao Y, Li Y, Tian Q, Du X, Deng Y. Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110508. [PMID: 32992005 DOI: 10.1016/j.cbpb.2020.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA molecules with post-transcriptional regulatory activity in various biological processes. Pearl oyster Pinctada fucata martensii is one of the main species cultured for marine pearl production in China and Japan. In this study, we constructed two small RNA libraries of mantle central (MC) and mantle edge (ME) from P. f. martensii and obtained 24,175,537 and 21,593,898 clean reads, respectively. A total of 258 miRNAs of P. f. martensii (Pm-miRNA) were identified, and 93 differentially expressed miRNAs (DEMs) including 49 known Pm-miRNAs and 44 novel Pm-miRNAs were obtained from the MC and ME. The target transcripts of these DEMs were obviously enriched in neuroactive ligand-receptor interaction pathway, and others. After over-expression of Pm-miR-124 and Pm-miR-9a-5p in the MC by mimic injection into the muscle of P. f. martensii, nacre exhibited a disorderly growth as detected by scanning electron microscopy. Pm-nicotinic acetylcholine receptor alpha subunit, Pm-neuropeptide Y and Pm-chitin synthase were investigated as the targets of Pm-miR-124; and Pm-tumor necrosis factor receptor associated factor 2 and Pm-chitin synthase were investigated as the targets of Pm-miR-9a-5p. These predicted target transcripts were down-regulated after the over-expression of Pm-miR-124 and Pm-miR-9a-5p in MC. This study comprehensively analyzed the miRNAs in mantle tissues to enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yiping Li
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qunli Tian
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China.
| |
Collapse
|
8
|
Yu D, Wu H, Peng X, Ji C, Zhang X, Song J, Qu J. Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108697. [PMID: 31891766 DOI: 10.1016/j.cbpc.2019.108697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules containing 18-24 nucleotides, and those with conserved structures are able to regulate the expression of eukaryotic genes by inhibition or enhancement of mRNA translation. However, miRNAs of the blue mussel, Mytilus galloprovincialis have not been reported. M. galloprovincialis is a primary species distributed along coastal zones worldwide. To reveal the repertoire of miRNAs in M. galloprovincialis, we constructed small RNA libraries prepared from three different mussels, which were then sequenced by Solexa deep sequencing technology. A total of 32,836,817, 33,359,113 and 33,093,562 clean reads from the tissues of the three M. galloprovincialis were obtained. Based on sequence similarities and hairpin structure predictions, 137 M. galloprovincialis miRNAs (mg-miRNA) were identified. Among the mg-miRNAs, 104 were conserved across species, whereas 33 might be novel and specific for M. galloprovincialis. Some of the mg-miRNAs, such as let-7 and the miR-100 family are playing key roles in many metabolic pathways and are worthy of further study. By performing a whole genome-scale characterization of mg-miRNAs and proposing their potential functions, these results provide a foundation for understanding the biological processes of the blue mussel, M. galloprovincialis.
Collapse
Affiliation(s)
- Deliang Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, 518060, PR China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
9
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
10
|
Yang Z, Wu Y. Improved annotation of Lutzomyia longipalpis genome using bioinformatics analysis. PeerJ 2019; 7:e7862. [PMID: 31616601 PMCID: PMC6790103 DOI: 10.7717/peerj.7862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Lutzomyia longipalpis, a sand fly, is a vector-spreading pathogenic protozoan in the New World. MicroRNA (miRNA) is evolutionarily-conserved non-coding RNA, which plays critical roles in various biological processes. To date, the functions of most proteins in L. longipalpis are unknown, and few studies have addressed the roles of miRNAs in this species. In the present study, we re-annotated the protein-coding genes and identified several miRNAs using a set of comparative genomics tools. A large number of L. longipalpis proteins were found to be homologous with those in the mosquito genome, indicating that they may have experienced similar selective pressures. Among these proteins, a set of 19 putative salivary proteins were identified, which could be used for studying the transmission of Leishmania. Twenty-one novel miRNAs were characterized, including two miRNAs, miR-4113-5p and miR-5101, which are unique to L. longipalpis. Many of the targets of these two genes were found to be involved in ATP hydrolysis-coupled proton transport, suggesting that they may have important roles in the physiology of energy production. Topology analysis of the miRNA-gene network indicated that miR-9388-5p and miR-3871-5p regulate several critical genes in response to disease development. In conclusion, our work provides a basis for improving the genome annotation of L. longipalpis, and opens a new door to understanding the molecular regulatory mechanisms in this species.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering, Hangzhou Dianzi University, Hangzhou, PR China
| | - Ying Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, PR China
| |
Collapse
|
11
|
Huang S, Ichikawa Y, Yoshitake K, Kinoshita S, Igarashi Y, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S. Identification and Characterization of microRNAs and Their Predicted Functions in Biomineralization in the Pearl Oyster ( Pinctada fucata). BIOLOGY 2019; 8:biology8020047. [PMID: 31212990 PMCID: PMC6627748 DOI: 10.3390/biology8020047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
The biological process of pearl formation is an ongoing research topic, and a number of genes associated with this process have been identified. However, the involvement of microRNAs (miRNAs) in biomineralization in the pearl oyster, Pinctada fucata, is not well understood. In order to investigate the divergence and function of miRNAs in P. fucata, we performed a transcriptome analysis of small RNA libraries prepared from adductor muscle, gill, ovary, and mantle tissues. We identified 186 known and 42 novel miRNAs in these tissues. Clustering analysis showed that the expression patterns of miRNAs were similar among the somatic tissues, but they differed significantly between the somatic and ovary tissues. To validate the existence of the identified miRNAs, nine known and three novel miRNAs were verified by stem-loop qRT-PCR using U6 snRNA as an internal reference. The expression abundance and target prediction between miRNAs and biomineralization-related genes indicated that miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 may be key factors in the regulatory network that act by controlling the formation of matrix proteins or the differentiation of mineralogenic cells during shell formation in mantle tissue. Our findings serve to further clarify the processes underlying biomineralization in P. fucata.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yuki Ichikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Fumito Omori
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan.
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
12
|
Li J, Xie R. Circular RNA expression profile in gingival tissues identifies circ_0062491 and circ_0095812 as potential treatment targets. J Cell Biochem 2019; 120:14867-14874. [PMID: 31021476 DOI: 10.1002/jcb.28748] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
Circular RNAs (circRNAs) emerging as a novel class of endogenous, conserved noncoding RNAs, which have been reported to be participated in immune-inflammatory response recently, yet their function in periodontal inflammation has remained elusive. This study aimed to analyze the specific circRNAs expressed in periodontal inflammation process through Illumina (San Diego, CA) sequencing technology combining with experimental validation. The inflamed and healthy gingival tissues from patients were selected to explore the expression statues of circRNAs. In brief, 1304 dysregulated circRNAs were identified in inflamed gingival tissues. Besides, Gene Ontology (GO) enrichment analysis was conducted to investigate the functions of abnormally expressed circRNAs in periodontitis as well as their host-linear genes. Furthermore, the interaction network of circRNAs-miRNAs (microRNA) was constructed to reveal the key circRNAs (circ_0095812, circ_0120299, circ_0125699, circ_0062491, and circ_0043115) in the pathobiology of periodontitis. Subsequently, we have investigated the expression pattern of circ_0062491 (downregulated) and circ_0095812 (upregulated) among 30-paired periodontitis patients and healthy individuals by quantitative real-time polymerase chain reaction. Moreover, circ_0062491 was identified as the sponge of miR-584 which play a key role in periodontitis.
Collapse
Affiliation(s)
- Jie Li
- Department of Stomatology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruiyue Xie
- Department of Stomatology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
13
|
Transcriptome Dynamics During Turbot Spermatogenesis Predicting the Potential Key Genes Regulating Male Germ Cell Proliferation and Maturation. Sci Rep 2018; 8:15825. [PMID: 30361543 PMCID: PMC6202422 DOI: 10.1038/s41598-018-34149-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/23/2018] [Indexed: 01/19/2023] Open
Abstract
Spermatogenesis is a dynamic developmental process in which spermatogonial stem cells proliferate, differentiate and mature into functional spermatozoa. These processes require an accurate gene regulation network. Here, we investigated the dynamic changes that occur during spermatogenesis through a combination of histological and transcriptome analyses of different developmental stages of the testis. We constructed 18 testis transcriptome libraries, and the average length, N50, and GC content of the unigenes were 1,795 bp; 3,240 bp and 49.25%, respectively. Differentially expressed genes (DEGs) that were related to germ cell proliferation and maturation, such as NANOS3, RARs, KIFs, steroid hormone synthesis-related genes and receptor genes, were identified between pairs of testis at different developmental stages. Gene ontology annotation and pathway analyses were conducted on DEGs with specific expression patterns involved in the regulation of spermatogenesis. Nine important pathways such as steroid hormone biosynthesis related to spermatogenesis were identified. A total of 21 modules that ranged from 49 to 7,448 genes were designed by a weighted gene co-expression network analysis. Furthermore, a total of 83 candidate miRNA were identified by computational methods. Our study provides the first transcriptomic evidence for differences in gene expression between different developmental stages of spermatogenesis in turbot (Scophthalmus maximus).
Collapse
|
14
|
Li S, Chen W, Zhan A, Liang J. Identification and characterization of microRNAs involved in scale biomineralization in the naked carp Gymnocypris przewalskii. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:196-203. [PMID: 30317123 DOI: 10.1016/j.cbd.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/25/2022]
Abstract
The mineralized scale derived from skin plays a protective role for the fish body and also possesses important application values in the biomaterial field. However, little is known about fish scale biomineralization and related molecular regulatory mechanisms. Here, we used a comparative microRNA sequencing approach to identify and characterize differentially expressed microRNAs (DEMs) involved in scale biomineralization in the naked carp Gymnocypris przewalskii. A total of 18, 43, and 66 DEMs were obtained from skin tissues covered with initial, developing, and mature scales (IS, DS, and MS) compared with scale-uncovered skin. The target genes of these DEMs were significantly enriched in a sole biomineralization-related sphingolipid signaling pathway. Seven DEMs (dre-miR-124-3p, dre-miR-133a-2-5p, dre-miR-184, dre-miR-206-3p, novel_33, novel_56 and novel_75) were common in IS, DS, and MS. Dre-miR-124-3p, dre-miR-206-3p, and novel_33 were predicted to be able to target biomineralization-related genes. Stem-loop real-time quantitative PCR further confirmed that the common DEMs had higher expression levels in scale-covered skin tissues than that in the gill, intestine, and brain, except for dre-miR-133a-2-5p. Our results suggest that these identified microRNAs may play a role in scale biomineralization in G. przewalskii, and the obtained microRNAs are expected to be candidates in understanding the molecular mechanism of scale biomineralization in fish species.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
15
|
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience 2018; 7:4997018. [PMID: 29788257 PMCID: PMC6007483 DOI: 10.1093/gigascience/giy056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. Results By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. Conclusions This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.
Collapse
Affiliation(s)
- Ines Herlitze
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Département Aviv, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne - Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Understanding microRNA Regulation Involved in the Metamorphosis of the Veined Rapa Whelk ( Rapana venosa). G3-GENES GENOMES GENETICS 2017; 7:3999-4008. [PMID: 29079680 PMCID: PMC5714496 DOI: 10.1534/g3.117.300210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The veined rapa whelk (Rapana venosa) is widely consumed in China. Nevertheless, it preys on oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differentially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from precompetent to competent larvae. Thirty-three of these were upregulated and the others were downregulated. Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x, and miR-263-x showed a >100-fold change during development, while the miR-242-x and novel-m0052-3p expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion, cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymerase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for further investigations into regulatory mechanisms of gastropod metamorphosis.
Collapse
|
17
|
Identification and comparative analysis of the pearl oyster Pinctada fucata hemocytes microRNAs in response to Vibrio alginolyticus infection. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0575-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
19
|
PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster Pinctada martensii. PLoS One 2017; 12:e0178561. [PMID: 28570710 PMCID: PMC5453546 DOI: 10.1371/journal.pone.0178561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/15/2017] [Indexed: 01/21/2023] Open
Abstract
Heterodimeric PEBP2/CBFs are key regulators in diverse biological processes, such as haematopoietic stem-cell generation, bone formation and cancers. In this work, we cloned runt-like transcriptional factor (designated as PmRunt) and CBF β (designated as PmCBF) gene, which comprise the heterodimeric transcriptional factor in Pinctada martensii. PmRunt was identified with an open reading frame that encodes 545 amino acids and has typical Runt domain. Phylogenetic analysis results speculated that runt-like transcriptional factors (RDs) in vertebrates and invertebrates are separated into two branches. In molluscs, PmRunt and other RDs are clustered in one of these branches. Direct interaction between PmRunt and PmCBF was evidenced by yeast two-hybrid assay results. Gene repression by RNA interference decreased the expression level of PmRunt, and subsequent observation of the inner surface of the nacre by scanning electron microscopy demonstrated disordered growth. The luciferase activities of reporters that contain promoter regions of Collagen VI-like (PmColVI) and PmNacrein were enhanced by PmRunt. Meanwhile, Pm-miR-183 apparently inhibited the relative luciferase activity of reporters containing the 3′-UTR of PmRunt. The expression level of PmRunt was repressed after Pm-miR-183 was overexpressed in the mantle tissue. Therefore, we proposed that PmRunt could be targeted by Pm-miR-183 and regulate the transcription of PmColVI and PmNacrein by increasing their transcriptional activity, thereby governing nacre formation.
Collapse
|