1
|
Amini M, Rasouli M, Ghoranneviss M, Momeni M, Ostrikov KK. Synergistic cellulose-based nanocomposite packaging and cold plasma decontamination for extended saffron preservation. Sci Rep 2022; 12:18275. [PMID: 36316404 PMCID: PMC9619018 DOI: 10.1038/s41598-022-23284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Sterilization of saffron packaging and maintaining the quality of saffron content are the main priorities in saffron preservation. Common modalities do not offer lasting saffron preservation and it is urgent to develop novel packaging approaches from renewable resources and prevent packaging waste. Here, simultaneous decontamination and quality maintenance of saffron is demonstrated, for the first time, through the synergistic application of nano-clay-loaded carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) nanocomposites (CNCs) and cold plasmas (CP). Compared to the separate uses of CP and CMC/PVA/nano clay, our results confirm the synergies between CP and CMC/PVA/nano clay cause complete inactivation of Escherichia coli bacteria, while not significantly affecting the concentrations of the essential saffron components (safranal, crocin, and picrocrocin). Overall, the CP-treated CMC/PVA/nano clay fosters saffron preservation, through contamination removal and quality maintenance of the food product. The synergistic application of CP and CMC/PVA/nano clay thus represents a promising strategy for packaging, sterilization, and preservation of high-value food products.
Collapse
Affiliation(s)
- Maryam Amini
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Rasouli
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran ,grid.412265.60000 0004 0406 5813Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran, Iran
| | - Mahmood Ghoranneviss
- grid.411463.50000 0001 0706 2472Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Momeni
- grid.440804.c0000 0004 0618 762XFaculty of Physics, Shahrood University of Technology, Semnan, Iran
| | - Kostya Ken Ostrikov
- grid.1024.70000000089150953School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
2
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
3
|
Ahari H, Seifari FK. Saffron packaging: main factors to be considered. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Saffron, Its Active Components, and Their Association with DNA and Histone Modification: A Narrative Review of Current Knowledge. Nutrients 2022; 14:nu14163317. [PMID: 36014823 PMCID: PMC9414768 DOI: 10.3390/nu14163317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Intensive screening for better and safer medications to treat diseases such as cancer and inflammatory diseases continue, and some phytochemicals have been discovered to have anti-cancer and many therapeutical activities. Among the traditionally used spices, Crocus sativus (saffron) and its principal bioactive constituents have anti-inflammatory, antioxidant, and chemopreventive properties against multiple malignancies. Early reports have shown that the epigenetic profiles of healthy and tumor cells vary significantly in the context of different epigenetic factors. Multiple components, such as carotenoids as bioactive dietary phytochemicals, can directly or indirectly regulate epigenetic factors and alter gene expression profiles. Previous reports have shown the interaction between active saffron compounds with linker histone H1. Other reports have shown that high concentrations of saffron bind to the minor groove of calf thymus DNA, resulting in specific structural changes from B- to C-form of DNA. Moreover, the interaction of crocin G-quadruplex was reported. A recent in silico study has shown that residues of SIRT1 interact with saffron bio-active compounds and might enhance SIRT1 activation. Other reports have shown that the treatment of Saffron bio-active compounds increases γH2AX, decreases HDAC1 and phosphorylated histone H3 (p-H3). However, the question that still remains to be addressed how saffron triggers various epigenetic changes? Therefore, this review discusses the literature published till 2022 regarding saffron as dietary components and its impact on epigenetic mechanisms. Novel bioactive compounds such as saffron components that lead to epigenetic alterations might be a valuable strategy as an adjuvant therapeutic drug.
Collapse
|
5
|
Repurposing of the Herbals as Immune-Boosters in the Prevention and Management of COVID-19: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease (COVID) is highly contagious, and negligence of it causes high morbidity and mortality globally. The highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was abbreviated as COVID-19 (Coronavirus disease 2019) by World Health Organization first time on February 11, 2020, and later on, WHO declared COVID-19 as a global pandemic on 11/3/2020. Epidemiological studies demonstrated that the SARS CoV-2 infects the overall population, irrespective of age, gender, or ethnic variation, but it was observed in clinical studies that older and compromised immunity population is much more prone to COVID-19. SARS-CoV-2 majorly spread through aeration route in droplet form on sneezing and coughing, or by contact when touching eyes, nose or mouth with the infected hands or any other organs, resulting from mild to severe range of SARS-CoV-2 infection. This literature-based review was done by searching the relevant SCI and SCOPUS papers on the pandemic, SARS-CoV-2 and COVID-19, herbal formulation, and Ayurveda from the databases, Academia, Google Scholar, PubMed, and ResearchGate. The present review attempts to recognize the therapeutic strategies to combat COVID-19 because of the current human risk. Indian system of medicine, including herbals, has immense potential in treating and managing various viral infections and provides evidence to utilize Ayurvedic medication to improve immunity. Cumulative research findings suggest that Ayurvedic formulations and herbal immunomodulators (Tino sporacordifolia, Withania somnifera, Crocus sativus, Zafran, Allium sativum, Zingiber officinale, Albizia lebbek, Terminalia chebula, Piper longum, Mangifera indica, Ocimum sanctum, Centella asiatica ) are promising in the treatment of outrageous viral infections without exerting adverse effects. Considering the ancient wisdom of knowledge, the herbal formulations would compel healthcare policymakers to endorse Ayurveda formulations to control the COVID-19 pandemic significantly.
Collapse
|
6
|
Istiqola A, Syafiuddin A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arsi Istiqola
- Industrial Management of Service, Food and Nutrition IPB University (Bogor Agricultural University) Bogor Indonesia
| | - Achmad Syafiuddin
- Department of Public Health, Faculty of Health Universitas Nahdlatul Ulama Surabaya Surabaya Indonesia
| |
Collapse
|
7
|
Tavakoli H, Rastegar H, Taherian M, Samadi M, Rostami H. The effect of nano-silver packaging in increasing the shelf life of nuts: An in vitro model. Ital J Food Saf 2017; 6:6874. [PMID: 29564232 PMCID: PMC5850069 DOI: 10.4081/ijfs.2017.6874] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/12/2017] [Accepted: 09/04/2017] [Indexed: 11/23/2022] Open
Abstract
Nano packaging is currently one of the most important topics in food packaging technologies. The aim of the application of this technology in food packaging is increasing shelf life of foods by preventing internal and external corruption and microbial contaminations. Use of silver nanoparticles in food packaging has recently attracted much attention. The aim of this study was to investigate the effect of nano-silver packaging in increasing the shelf life packages of nuts in an In vitro model. In this experimental study, the effects of different nano-silver concentrations (0, 1, 2 and 3 percent) on biological and chemical properties of 432 samples of nuts including walnuts, hazelnuts, almonds and pistachios were evaluated during 0, 3, 6, 9, 12, 15, 18, 21 and 24 months. In most samples, different concentrations of nano-silver (1, 2 and 3 %) significantly reduced total microbial count, mold and coliform counts compared to control group and the 3% nano-silver concentration was more effective than other concentrations (P<0.05). Moreover, using this packaging yielded an antioxidant effect especially when 2% and 3% nano-silver concentrations were used. Nano-silver also prevented growth of mold and so prevented aflatoxin production in all treatment groups. Results of chemical and biological tests showed that the silver nanoparticles had a significant effect on increasing the shelf life of nuts. The highest shelf life belonged to pistachios, almonds, hazelnuts and walnuts with 20, 19, 18 and 18 months, respectively. The shelf life was associated with amount of silver nanoparticles. The highest antimicrobial activity was observed when 3% nano-silver concentration was used in pistachios. The shelf life of control groups in similar storage conditions were calculated for an average of 13 months. In conclusion, the results of this study demonstrate the efficacy of nano-silver packing in increasing shelf life of nuts. Hence, use of nano-silver packaging in food industry, especially in food packaging is recommended.
Collapse
Affiliation(s)
- Hamidreza Tavakoli
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran
| | - Hossein Rastegar
- Food and Drug Research Institute, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran.,Cosmetic Products Research Center, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran
| | - Mahdi Taherian
- Food and Drug Research Institute, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Rostami
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran
| |
Collapse
|
8
|
Hosseini Nasab N, Jalili MM, Farrokhpay S. Application of paraffin and silver coated titania nanoparticles in polyethylene nanocomposite food packaging films. J Appl Polym Sci 2017. [DOI: 10.1002/app.45913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nafiseh Hosseini Nasab
- Department of Polymer Engineering, Science & Research Branch; Islamic Azad University; Tehran Iran
| | - Mohammad Mehdi Jalili
- Department of Polymer Engineering, Science & Research Branch; Islamic Azad University; Tehran Iran
| | - Saeed Farrokhpay
- School of Chemical Engineering; University of Queensland; St. Lucia, Brisbane Queensland 4072 Australia
| |
Collapse
|
9
|
Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf B Biointerfaces 2017; 160:325-330. [PMID: 28950197 DOI: 10.1016/j.colsurfb.2017.09.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Chitosan based hydrogels are commonly applied in various fields of medicine and pharmacy. Modification of hydrogel polymers using nanosilver particles may result in formation of materials with enhanced antibacterial properties. In this article synthesis of hydrogel materials based on chitosan and modified with silver nanoparticles is presented. First, preparation and characterization of silver nanoparticles using UV-vis spectroscopy has been shown. Hydrogels modified with nanosilver particles were subjected to the measurements of swelling ability and in vitro tests in distilled water and Simulated Body Fluid (SBF), respectively. Additionally, evaluation of antibacterial properties against Staphylococcus aureus and Enterococcus faecalis as well as results of cytotoxicity of hydrogel materials modified with silver nanoparticles conducted by means of XTT and MTT assays using dermis cells BJ (CRL-2522TM) have been presented.
Collapse
|
10
|
Phytochemistry and Pharmacological Studies of Citrus macroptera: A Medicinal Plant Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9789802. [PMID: 28740540 PMCID: PMC5504973 DOI: 10.1155/2017/9789802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023]
Abstract
Citrus macroptera (family Rutaceae), commonly known as Sat Kara, is a pharmacologically diverse medicinal plant. Various parts of this plant, specifically fruit, have an immense range of medicinal uses in folk medicine directed for a number of ailments. A plethora of active phytochemical constituents of this plant have been revealed so far, namely, limonene, beta-caryophyllene, beta-pinene, geranial edulinine, ribalinine, isoplatydesmine, and so forth. Several studies demonstrated the exploration of pharmacological potential of various parts such as fruits, leaves, and stems of C. macroptera as antioxidant, cytotoxic, antimicrobial, thrombolytic, hypoglycemic, anxiolytic, antidepressant, cardioprotective, and hepatoprotective. Furthermore, inhibition of in vitro α-amylase, inhibition of paracetamol induced hepatotoxicity, and potentiation of brain antioxidant enzyme are also ascertained. In present review, comprehensive study focused on knowledge regarding several phytopharmacological activities of Citrus macroptera has been described.
Collapse
|
11
|
Bentrad N, Gaceb-Terrak R, Rahmania F. Identification and evaluation of antibacterial agents present in lipophilic fractions isolated from sub-products of Phoenix dactilyfera. Nat Prod Res 2017; 31:2544-2548. [PMID: 28403631 DOI: 10.1080/14786419.2017.1314282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, the dried powder of seeds and pollen of Phoenix dactylifera was extracted using Soxhlet extractor and biochemical composition of lipophilic extracts was analysed by GCMS. Then, we have tested the antibacterial effect of fatty acids and volatile compounds found in these sub-products. The results revealed that the main fatty acids found in Deglet Nour seeds is are oleic acid (42.06%) followed by capric acid (24.16%), Takerbucht seeds extract contains mostly oleic acid (40.59%) and palmitic acid (20.19%), while Bent Kbala seed extract is rich in cis-vaccenic acid (52.09%) followed by capric acid (16.71%). Pollen extract have shown for the first time the richness in 14-methyl palmitic acid (33.31%), linoleic acid (31.16%) and linolenic acid (25.78%). Some of these elements seem to have a significant effect against some pathogenic bacteria.
Collapse
Affiliation(s)
- Najla Bentrad
- a Laboratory Research on Arid Zones, Faculty of Biological Sciences, Department of Biology and Physiology of Organisms (BPO) , University of Sciences and Technology Houari Boumediene (USTHB) , Bab Ezzouar , Algeria
| | - Rabéa Gaceb-Terrak
- a Laboratory Research on Arid Zones, Faculty of Biological Sciences, Department of Biology and Physiology of Organisms (BPO) , University of Sciences and Technology Houari Boumediene (USTHB) , Bab Ezzouar , Algeria
| | - Fatma Rahmania
- a Laboratory Research on Arid Zones, Faculty of Biological Sciences, Department of Biology and Physiology of Organisms (BPO) , University of Sciences and Technology Houari Boumediene (USTHB) , Bab Ezzouar , Algeria
| |
Collapse
|
12
|
Bahmani M, Rafieian-Kopaei M, Hassanzadazar H, Taherikalani M. Pseudomoniasis phytotherapy: a review on most important Iranian medicinal plants effective on Pseudomonas aeruginosa. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:347-350. [PMID: 28149496 PMCID: PMC5277605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Pseudomonas aeruginosa is a Gram-negative, aerobic bacterium found in water and soil. It is a normal flora in skin and gastrointestinal tract of human beings. P. aeruginosa as an opportunistic pathogen involved in nosocomial infections having multiple pathogenic factors and shows high rate of resistance to different antibiotics. The aim of this study was to identify the most important native medicinal plants of Iran effective on P. aeruginosa. MATERIALS AND METHODS All required information was obtained by searching keywords such as P. aeruginosa, medicinal plant extracts or essential oils in published articles in authentic scientific databases such as Science Direct, Wiley-Blackwell, Springer, Google scholar, Scientific Information Database (SID) and Magiran. RESULTS According to the literature review, our results showed 12 different native medicinal plants were effective against P. aeruginosa in Iran including Eucalyptus camadulensis, Marticaria chamomilla, Ferula gummosa Boiss, Lawsonia inermis, Ocimumgra tissimum, Allium sativum, Satureja hortensis L, Satureja bachtiarica Bunge, Satureja khuzestanica (Jamzad), Thymus daenensis Celak, Thymus carmanicus Jalals and Camellia sinensis. CONCLUSION Phytochemical analysis has shown that bioactive compounds of medicinal plants with their antioxidant and antimicrobial properties can be good alternatives for the synthetic medicines in food and drug industry.
Collapse
Affiliation(s)
- Mahmoud Bahmani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, Faculty of Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morovat Taherikalani
- Razi Herbal Medicines Research Center and Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|