1
|
Jeyaraman M, Jeyaraman N, Ram PR, Muthu S, Jain VK, Iyengar KP. Decoding the hidden realm: Molecular pioneering unravelling osteoarticular tuberculosis diagnosis. J Clin Orthop Trauma 2024; 56:102538. [PMID: 39318541 PMCID: PMC11417564 DOI: 10.1016/j.jcot.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarticular tuberculosis (TB), a form of extrapulmonary tuberculosis, refers to the involvement of Mycobacterium tuberculosis (M.tb) in the bones and joints. While pulmonary tuberculosis is the most common form, osteoarticular TB represents a relatively rare but significant manifestation, accounting for approximately 1-3% of all TB cases. Accurate and timely diagnosis plays a pivotal role in the management of osteoarticular TB. Conventional diagnostic methods for osteoarticular TB, such as acid-fast bacilli smear microscopy and culture, have limitations in terms of sensitivity, specificity, and turnaround time. The purpose of this review is to comprehensively evaluate and synthesize the existing literature on molecular pioneering in osteoarticular TB diagnosis. Molecular techniques, such as nucleic acid amplification tests and gene-based assays, have emerged as promising tools for diagnosing TB. These techniques target specific genetic sequences of M.tb, enabling rapid and sensitive detection of the pathogen. However, the diagnostic accuracy, advantages, and limitations of these molecular techniques in the context of osteoarticular TB diagnosis require further investigation and consolidation of evidence. Furthermore, this review aims to identify areas for future research and development in the field of molecular diagnostics for osteoarticular TB.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Virginia Tech India, Chennai, 600095, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Pothuri Rishi Ram
- Department of Orthopaedics, Sanjay Gandhi Institute of Trauma and Orthopaedics, Bengaluru, 560029, Karnataka, India
| | - Sathish Muthu
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Karthikeyan P. Iyengar
- Trauma and Orthopaedic Surgeon, Southport and Ormskirk Hospitals, Mersey and West Lancashire Teaching NHS Trust, Southport, PR8 6PN, United Kingdom
| |
Collapse
|
2
|
Alshrouf MA, Elifranji ZO, Halayqeh S, Al-Saber M, Karam AM. Silent Case of Pediatric Osteoarticular Tuberculosis: A Case Report and Review of the Literature. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2024; 17:11795476241263683. [PMID: 38911938 PMCID: PMC11193920 DOI: 10.1177/11795476241263683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
Introduction Tuberculosis (TB) is one of the most prevalent infectious diseases globally, often presenting with nonspecific symptoms that can obscure diagnosis, especially when it manifests in uncommon sites such as osteoarticular tuberculosis (OA-TB). Case presentation We report a rare case of a 9-year-old male diagnosed with right knee tuberculosis after enduring severe symptoms for several months. Despite multiple negative biopsies and aspirates during initial debridement surgeries, a biopsy taken 6 months later confirmed the presence of Mycobacterium tuberculosis (MTB). The patient was subsequently treated with debridement and anti-tubercular therapy. Conclusion This case underscores the critical need to consider tuberculosis in patients presenting with chronic bone pain to avoid misdiagnosis, particularly in the developing world. The atypical presentation of osteoarticular tuberculosis in this young patient emphasizes the need for healthcare professionals to recognize subtle symptoms. Advanced imaging studies like MRI and microbiological evaluations, including site biopsies, are essential for accurate diagnosis. Increased awareness and collaborative research are crucial to improving the understanding and management of pediatric osteoarticular tuberculosis and extrapulmonary tuberculosis.
Collapse
Affiliation(s)
| | - Zuhdi O Elifranji
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman, Jordan
| | - Sereen Halayqeh
- The School of Medicine, The University of Jordan, Amman, Jordan
| | - Munther Al-Saber
- Department of Special Surgery, Division of Orthopaedics, School of Medicine, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
3
|
Mousavi-Sagharchi SMA, Afrazeh E, Seyyedian-Nikjeh SF, Meskini M, Doroud D, Siadat SD. New insight in molecular detection of Mycobacterium tuberculosis. AMB Express 2024; 14:74. [PMID: 38907086 PMCID: PMC11192714 DOI: 10.1186/s13568-024-01730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions of lives since the Middle Ages. According to the World Health Organization's report, tuberculosis ranks among the ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, methods have been developed based on gene expansion and detection. These methods typically commence with DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods with these advanced molecular diagnostic techniques.
Collapse
Affiliation(s)
| | - Elina Afrazeh
- Department of Marine Biology, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Maryam Meskini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Delaram Doroud
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Marius M, Fernandez C. Non-Microbiological Mycobacterial Detection Techniques for Quality Control of Biological Products: A Comprehensive Review. Microorganisms 2024; 12:788. [PMID: 38674732 PMCID: PMC11052345 DOI: 10.3390/microorganisms12040788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacteria can be one of the main contaminants of biological products, and their presence can have serious consequences on patients' health. For this reason, the European Pharmacopoeia mandates the specific testing of biological products for mycobacteria, a critical regulatory requirement aimed at ensuring the safety of these products before they are released to the market. The current pharmacopeial reference, i.e., microbial culture method, cannot ensure an exhaustive detection of mycobacteria due to their growth characteristics. Additionally, the method is time consuming and requires a continuous supply of culture media, posing logistical challenges. Thus, to overcome these issues, pharmaceutical industries need to consider alternative non-microbiological techniques to detect these fastidious, slow-growing contaminating agents. This review provides an overview of alternative methods, which could be applied within a quality control environment for biological products and underlines their advantages and limitations. Nucleic acid amplification techniques or direct measurement of mycobacteria stand out as the most suitable alternatives for mycobacterial testing in biological products.
Collapse
Affiliation(s)
- Marine Marius
- Sanofi, 1541 Ave. Marcel Mérieux, 69280 Marcy l’Etoile, France;
| | | |
Collapse
|
5
|
Chaturvedi M, Patel M, Tiwari A, Dwivedi N, Mondal DP, Srivastava AK, Dhand C. An insight to the recent advancements in detection of Mycobacterium tuberculosis using biosensors: A systematic review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:14-27. [PMID: 38052326 DOI: 10.1016/j.pbiomolbio.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/31/2023] [Accepted: 10/01/2023] [Indexed: 12/07/2023]
Abstract
Since ancient times, Tuberculosis (TB) has been a severe invasive illness that has been prevalent for thousands of years and is also known as "consumption" or phthisis. TB is the most common chronic lung bacterial illness in the world, killing over 2 million people each year, caused by Mycobacterium tuberculosis (MTB). As per the reports of WHO, in spite of technology advancements, the average rate of decline in global TB infections from 2000-2018 was only 1.6% per year, and the worldwide reduction in TB deaths was only 11%. In addition, COVID-19 pandemic has reversed years of global progress in tackling TB with fewer diagnosed cases. The majority of undiagnosed patients of TB are found in low- and middle-income countries where the GeneXpert MTB/RIF assay and sputum smear microscopy have been approved by the WHO as reference procedures for quickly detecting TB. Biosensors, like other cutting-edge technologies, have piqued researchers' interest since they offer a quick and accurate way to identify MTB. Modern integrated technologies allow for the rapid, low-cost, and highly precise detection of analytes in extremely little amounts of sample by biosensors. Here in this review, we outlined the severity of tuberculosis (TB) and the most recent developments in the biosensors sector, as well as their various kinds and benefits for TB detection. The review also emphasizes how widespread TB is and how it needs accurate diagnosis and effective treatment.
Collapse
Affiliation(s)
- Mansi Chaturvedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Tiwari
- School of Biomolecular Engineering & Biotechnology UTD RGPV, Bhopal, 462033, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Circular RNAs and tuberculosis infection. Int J Biol Macromol 2023; 226:1218-1225. [PMID: 36442574 DOI: 10.1016/j.ijbiomac.2022.11.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/13/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis (Mtb) that affects the immune system chronically. Therefore, effective control and treatment of tuberculosis requires rapid and accurate diagnostic strategies. Tuberculosis has always been a global burden on health, social and economic systems due to the lack of standard curative and diagnostic (bio)markers. Accordingly, the management and monitoring of patients with active TB at the primary care level may be possible through new, rapid and cost-effective non-sputum-based diagnostic procedures. Biomarkers can help diagnose various diseases, including circular RNA (circRNA), which has recently been introduced as an endogenous, abundant and stable RNA in the cytoplasm with unique tissue specificity. There are frequent reports of circRNA involvement in many pathological and physiological processes in human beings. Recent studies have highlighted the presence of circRNAs in serum and their role as promising biomarkers in the diagnosis of the disease, potentially due to the continuous, stable, closed covalent circular structures and lack of easy degradation by nucleases. The purpose of this review article is to scrutinize the behavior of circulating plasma RNAs in relation to the pathogenesis and diagnosis of tuberculosis.
Collapse
|
7
|
Rahmati S, Bahrampour A, Nasehi M, Mirzazadeh A, Ghaderi H, Shahesmaeili A. An Evaluation of The Diagnostic Value of Sputum Smears Microscopy and Pcr Relative to Sputum Culture in The Diagnosis of Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis in Iran. Med J Islam Repub Iran 2022; 36:112. [PMID: 36447544 PMCID: PMC9700423 DOI: 10.47176/mjiri.36.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/15/2023] Open
Abstract
Background: Tuberculosis is one of the oldest known diseases in humans, and early detection of tuberculosis is one of the main measures to decrease the spread of tuberculosis. In many parts of the world, including Iran, the diagnosis of tuberculosis is based on the detection of acid-fast bacillus in sputum smear microscopy and PCR. this study aimed to synthesize evidence on the diagnostic accuracy of sputum smear and PCR compared to sputum culture for the diagnosis of PT in Iranian patients. Methods: This systematic review and meta-analysis was conducted based on PRISMA guideline for systematic review and meta-analysis. Eligible studies were cross-sectional original diagnostic studies published in English and Persian in Iran which examined the sensitivity or specificity(study outcome) of sputum smear microscopy or PCR( as the test) relative to sputum culture (as the gold standard/comparator) among Iranian patients suspected of having tuberculosis( study population). Studies whose data were not complete or extractable were excluded. Results: A total of 3518 subjects were evaluated from 15 eligible studies. The pooled sensitivity of sputum smear and PCR was 75.12 (95% CI: 66.68-83.56) and 88.02 (95% CI: 82.87-93.27), respectively. The specificity for sputum smear and PCR was 93.94 (95% CI: 91.26-96.63) and 91.82 (95% CI: 87.29-96.35) respectively. The sensitivity of both sputum smears was higher in studies published after 2010, and had higher quality. The specificity of sputum smear was a bit lower in studies published after2010 but higher in studies with higher quality. The specificity of PCR was higher in studies published after 2010 but higher in studies with higher quality. Conclusion:The increased sensitivity of sputum smear and PCR during recent years suggests the improvement of preparation and laboratory methods in recent years. However, the imperfect sensitivity of these tests highlights the need for a more accurate diagnostic method for the detection of pulmonary tuberculosis in Iran.
Collapse
Affiliation(s)
- Shoboo Rahmati
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Center, Institute for Futures Studies in Health, Department of Biostatistics and Epidemiology, Faculty of Health Kerman University of Medical Sciences, Kerman, IRAN. Adjunct Professor of Griffith University, Brisbane, QLD, Australia
| | - Mahshid Nasehi
- Department of Epidemiology, School of Health, Iran University of Medical Sciences, Iran
| | - Ali Mirzazadeh
- Department of Epidemiology, University of San Francisco, California, USA
| | - Hosna Ghaderi
- Department of Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Armita Shahesmaeili
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R. Biosensors for the detection of Mycobacterium tuberculosis: a comprehensive overview. Crit Rev Microbiol 2022; 48:784-812. [PMID: 35196464 DOI: 10.1080/1040841x.2022.2035314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tuberculosis (TB) infection is one of the leading causes of death in the world. According to WHO reports 2019, the average rate of decrease in global TB incidences was only 1.6% per year from 2000 to 2018, besides that the global decline in TB deaths was just 11%. Therefore, the dire need for early detection of the pathogen for the successful diagnosis of TB seems justified. Mycobacterium tuberculosis secretory proteins have gained more attention as TB biomarkers, for the early diagnosis and treatment of TB. Here in this review, we elaborate on the recent advancements made in the field of piezoelectric, magnetic, optical, and electrochemical biosensors, in addition to listing their merits and setbacks. Additionally, this review also discusses the construction of biosensors through modern integrated technologies, such as combinations of analytical chemistry, molecular biology, and nanotechnology. Integrated technologies enhance the detection for perceiving highly selective, specific, and sensitive signals to detect M. tuberculosis. Furthermore, this review highlights the recent challenges and scope of improvement in numerous biosensors developed for rapid, specific, selective, and sensitive detection of tuberculosis to reduce the TB burden and successful treatment.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular biology and Genetic engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Amity University of Rajasthan, Jaipur, India
| |
Collapse
|
9
|
Dassanayake MK, Khoo TJ, An J. Antibiotic resistance modifying ability of phytoextracts in anthrax biological agent Bacillus anthracis and emerging superbugs: a review of synergistic mechanisms. Ann Clin Microbiol Antimicrob 2021; 20:79. [PMID: 34856999 PMCID: PMC8641154 DOI: 10.1186/s12941-021-00485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background and objectives The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. Methods Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. Findings A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. Conclusion Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.
Collapse
Affiliation(s)
- Mackingsley Kushan Dassanayake
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia.
| | - Teng-Jin Khoo
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Malaysia
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Sharma D, Rai R. Neoteric advancements in TB diagnostics and its future frame. Indian J Tuberc 2021; 68:313-320. [PMID: 34099195 DOI: 10.1016/j.ijtb.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) is one of the major infectious disease that causes threat to human health and leads to death in most of the cases. Mycobacterium tuberculosis is the causative agent that can affect both pulmonary and extra pulmonary regions of the body. This infection can be presented either as an active or latent form in the patients. Although this disease has been declared curable and preventable by WHO, it still holds its position as a global emergency. Over the past decade many hurdles such as low immunity, co-infections like HIV, autoimmune disorders, poverty, malnutrition and emerging trends in drug resistance patterns are hindering the eradication of this infection. However, many programmes have been launched by WHO with involvement of governments at various level to put a full stop over the disease. Under the Revised National Tuberculosis Control Programme (RNTCP) which was recently renamed as National Tuberculosis Elimination Programme (NTEP), the major focus is on eliminating tuberculosis by the year 2025. The main aim of the programme is to identify feasible quality testing, evaluate through NIKSHYA poshak yozana, restrict through BCG vaccination and assemble with public awareness to eradicate MTB. Numerous novel diagnostic techniques and molecular tools have been developed to elucidate and differentiate report of various suspected and active tuberculosis patients. However, improvements are still required to cut short the duration of the overall process ranging from screening of patients to their successful treatment.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Biotechnology, DAV College, Jalandhar, 144008, Punjab, India
| | - Rohit Rai
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
11
|
Abdullah M, Suraiya S, Mohamad S, Harun A. Dataset of complete genome assembly and analysis of mycobacterium tuberculosis strain SIT745/EAI1-MYS. Data Brief 2020; 31:105949. [PMID: 32671154 PMCID: PMC7339031 DOI: 10.1016/j.dib.2020.105949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022] Open
Abstract
In this dataset, we report the genome assembly and data analysis of Mycobacterium tuberculosis strain SIT745/EAI1-MYS. Previously, this strain was isolated from a Malaysian patient with extra-pulmonary tuberculosis, and identification of this strain is done by spoligotype patterns with fifteen known Shared International Type (SITs). Further analysis showed that this strain has a remarkable phylogeographical specificity for Malaysia. Based on the National Center for Biotechnology Information (NCBI) nucleotide database information, the complete genome consists of 150 contigs with various sequence lengths and was not assembled. In this assembly, the aforementioned contigs along with reference sequence from Mycobacterium tuberculosis strain H37Rv and Mycobacterium bovis strain AF2122/97 was used for gap closures, were assembled into a single circular chromosome length of approximately 4.42 Mega bases (Mb) with an average GC content of 65.6%. The single circular chromosome was shown to contain 4,009 protein-coding sequences, 3 ribosomal RNAs, 45 transfer RNAs, and 12 superclasses distributed with 277 subsystems which constitute nearly 1900 genes, respectively. The genome information will provide fundamental knowledge of this organism as well as insight for understanding genomic and proteomic profiling, phylogenetic relationship.
Collapse
|
12
|
Golichenari B, Nosrati R, Farokhi-Fard A, Faal Maleki M, Gheibi Hayat SM, Ghazvini K, Vaziri F, Behravan J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit Rev Biotechnol 2019; 39:1056-1077. [DOI: 10.1080/07388551.2019.1668348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aref Farokhi-Fard
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Faal Maleki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
13
|
Ngema XT, Baker P, Ajayi F, Aubert PH, Banet P. Polyamic acid (PAA) immobilized on glassy carbon electrode (GCE) as an electrochemical platform for the sensing of tuberculosis (TB) antibodies and hydrogen peroxide determination. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1636058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xolani Terrance Ngema
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville, South Africa
- Laboratoire de Physico-chimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Neuville-sur-Oise, France
| | - Priscilla Baker
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Fanelwa Ajayi
- SensorLab, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Pierre-Henri Aubert
- Laboratoire de Physico-chimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Neuville-sur-Oise, France
| | - Philippe Banet
- Laboratoire de Physico-chimie des Polymères et des Interfaces (LPPI, EA 2528), Université de Cergy-Pontoise, Neuville-sur-Oise, France
| |
Collapse
|
14
|
Ejeh EF, Undiandeye A, Akinseye VO, Okon KO, Kazeem HM, Kudi CA, Cadmus SIB. Diagnostic performance of GeneXpert and Ziehl-Neelson microscopy in the detection of tuberculosis in Benue State, Nigeria. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Enenche Francis Ejeh
- Department of Veterinary Microbiology, University of Maiduguri, Nigeria
- Pulmonary, Department of Medicine, Critical Care & Sleep Medicine Unit, University of California, San Diego, USA
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Victor O. Akinseye
- Department of Chemical Sciences, Faculty of Science, Augustine University Ilara-Epe, Lagos State, Nigeria
| | - Kenneth O. Okon
- Department of Medical Microbiology, Federal Medical Centre, Makurdi, Nigeria
| | - Haruna M. Kazeem
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | | | - Simeon Idowu B. Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Nigeria
| |
Collapse
|
15
|
Automatic microscopic detection of mycobacteria in sputum: a proof-of-concept. Sci Rep 2018; 8:11308. [PMID: 30054578 PMCID: PMC6063956 DOI: 10.1038/s41598-018-29660-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/11/2018] [Indexed: 11/09/2022] Open
Abstract
The laboratory diagnosis of lung mycobacterioses including tuberculosis comprises the microscopic examination of sputum smear after appropriate staining such as Ziehl-Neelsen staining to observe acid-fast bacilli. This standard procedure is operator-dependant and its sensitivity depends on the duration of observation. We developed and evaluated an operator-independent microscopic examination of sputum smears for the automated detection and enumeration of acid-fast bacilli using a ZEISS Axio Scan.Z1 microscope. The sensitivity, specificity, positive predictive value, negative predictive values and accuracy were calculated using standard formulations by comparison with standard microscopic examination. After in-house parameterization of the automatic microscope and counting software, the limit of detection evaluated by seeding negative sputa with Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv (100–105 bacilli/mL) was of 102 bacilli/mL of sputum with a 100% positivity rate. Then, the evaluation of 93 sputum specimens including 34 smear-positive and 59 smear-negative specimens yielded a sensitivity of 97.06% [84.67–99.93%], a specificity of 86.44% [73.01–92.78%]. Up to 100 smear slides could be stocked for reading in the microscope magazine and results are exportable into the laboratory information system. Based on these preliminary results, we are implanting this automatic protocol in the routine workflow so that only smears detected positive by automatic microscopy are confirmed by standard microscopic examination.
Collapse
|
16
|
Golichenari B, Nosrati R, Farokhi-Fard A, Abnous K, Vaziri F, Behravan J. Nano-biosensing approaches on tuberculosis: Defy of aptamers. Biosens Bioelectron 2018; 117:319-331. [PMID: 29933223 DOI: 10.1016/j.bios.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
Abstract
Tuberculosis is a major global health problem caused by the bacterium Mycobacterium tuberculosis (Mtb) complex. According to WHO reports, 53 million TB patients died from 2000 to 2016. Therefore, early diagnosis of the disease is of great importance for global health care programs. The restrictions of traditional methods have encouraged the development of innovative methods for rapid, reliable, and cost-effective diagnosis of tuberculosis. In recent years, aptamer-based biosensors or aptasensors have drawn great attention to sensitive and accessible detection of tuberculosis. Aptamers are small short single-stranded molecules of DNA or RNA that fold to a unique form and bind to targets. Once combined with nanomaterials, nano-scale aptasensors provide powerful analytical platforms for diagnosing of tuberculosis. Various groups designed and studied aptamers specific for the whole cells of M. tuberculosis, mycobacterial proteins and IFN-γ for early diagnosis of TB. Advantages such as high specificity and strong affinity, potential for binding to a larger variety of targets, increased stability, lower costs of synthesis and storage requirements, and lower probability of contamination make aptasensors pivotal alternatives for future TB diagnostics. In recent years, the concept of SOMAmer has opened new horizons in high precision detection of tuberculosis biomarkers. This review article provides a description of the research progresses of aptamer-based and SOMAmer-based biosensors and nanobiosensors for the detection of tuberculosis.
Collapse
Affiliation(s)
- Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | - Aref Farokhi-Fard
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto, Canada.
| |
Collapse
|