1
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Liang X, Ma X, Luan F, Gong J, Zhao S, Pan Y, Liu Y, Liu L, Huang J, An Y, Hu S, Yang J, Dong D. Identification of new subtypes of breast cancer based on vasculogenic mimicry related genes and a new model for predicting the prognosis of breast cancer. Heliyon 2024; 10:e36565. [PMID: 39263085 PMCID: PMC11387377 DOI: 10.1016/j.heliyon.2024.e36565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Breast cancer is a malignant tumor that poses a serious threat to women's health, and vasculogenic mimicry (VM) is strongly associated with bad prognosis in breast cancer. However, the relationship between VM and immune infiltration in breast cancer and the underlying mechanisms have not been fully studied. On the basis of the Cancer Genome Atlas (TCGA), Fudan University Shanghai Cancer Center (FUSCC) database, GSCALite database, and gene set enrichment analysis (GSEA) datasets, we investigated the potential involvement of VM-related genes in the development and progression of breast cancer. We analyzed the differential expression, mutation status, methylation status, drug sensitivity, tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoints, tumor microenvironment (TME), and immune cell infiltration levels associated with VM-related genes in breast cancer. We created two VM subclusters out of breast cancer patients using consensus clustering, and discovered that patients in Cluster 1 had better survival outcomes compared to those in Cluster 2. The infiltration levels of T cells CD4 memory resting and T cells CD8 were higher in Cluster 1, indicating an immune-active state in this cluster. Additionally, we selected three prognostic genes (LAMC2, PIK3CA, and TFPI2) using Lasso, univariate, and multivariate Cox regression and constructed a risk model, which was validated in an external dataset. The prognosis of patients is strongly correlated with aberrant expression of VM-related genes, which advances our knowledge of the tumor immune milieu and enables us to identify previously unidentified breast cancer subtypes. This could direct more potent immunotherapy approaches.
Collapse
Affiliation(s)
- Xiao Liang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xinyue Ma
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Feiyang Luan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Gong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Shidi Zhao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiwen Pan
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yijia Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Lijuan Liu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jing Huang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yiyang An
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Sirui Hu
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Jin Yang
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Danfeng Dong
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
3
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Deng C, Li H, Li Q. F-box protein 17 promotes glioma progression by regulating glycolysis pathway. Biosci Biotechnol Biochem 2022; 86:455-463. [PMID: 35044455 DOI: 10.1093/bbb/zbac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
F-box protein 17 (FBXO17) is associated with high-grade glioma and acted as a promotor of glioma development. This study investigated the effect and underlying pathway of FBXO17 on glioma. The Cancer Genome Atlas database was applied to analyze FBXO17 expression information in glioma. First, high FBXO17 expressions are associated with glioma and poor prognosis. Then, FBXO17 was upregulated in glioma cells. Meanwhile, knock-down of FBXO17 inhibited cell proliferation, migration, and invasion, but increased the cell apoptosis. Besides, knock-down of FBXO17 inhibited mitochondrial membrane potential and increased reactive oxygen species. Furthermore, knock-down of FBXO17 decreased level of adenosine triphosphate, glucose, lactate, GLUT1, HK2, PFKP, PKM2, and LDHA. In conclusion, FBXO17 was high expression in glioma, and FBXO17 regulates glioma by regulating glycolysis pathway, providing novel theoretical for the treatment of glioma.
Collapse
Affiliation(s)
- Chao Deng
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Hongzhi Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| | - Qingmin Li
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shandong, P. R. China
| |
Collapse
|
5
|
Zhang K, Zhao Q, Li Z, Fu F, Zhang H, Fu J, Zheng M, Zhang S. Clinicopathological Significances of Cancer Stem Cell-Associated HHEX Expression in Breast Cancer. Front Cell Dev Biol 2020; 8:605744. [PMID: 33425911 PMCID: PMC7785851 DOI: 10.3389/fcell.2020.605744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the transcription factor hematopoietic ally expressed homeobox/proline-rich homeodomain (HHEX/PRH) is implicated in numerous cancers. However, the association of HHEX with breast cancer (BC) remains unclear. In this study, HHEX mRNA and protein expression were analyzed using the Oncomine, UALCAN, GEPIA, TCGAportal, and HPA databases. We evaluated the effect of HHEX on clinicopathological parameters using Kaplan–Meier plotter, OncoLnc, TCGAportal, PROGgeneV2, and BC-GenExMiner. Western blotting was performed to compare the level of HHEX in breast samples of Tientsin Albino 2 mice, human breast precancerous lesions, benign breast tumors, and BC. The correlation between HHEX and cancer stem cells was investigated using the GEO (GSE52327 and GSE94865) and GEPIA datasets. Networks between HHEX and survival-related gene marker sets and microRNAs were analyzed using GEPIA, StarBase, and Cytoscape. Results of this study showed that HHEX expression in BC was significantly lower than those in breast precancerous lesions and benign breast tumors at both mRNA and protein levels. BC patients with lower HHEX expression had significantly worse overall survival and disease-free survival. Moreover, HHEX significantly affected the clinicopathology of BC. Specifically, low HHEX expression was correlated with the following groups of patients: age ≤51 years, ER-negative or PR-negative patients, HER-2 positive, triple-negative breast cancer, and basal-like BC. Immunohistochemical analysis of the breast samples showed significant differences of HHEX staining index (P < 0.001) among the three groups. To further investigate the mechanism, we determined the intersection of differentially expressed genes related to BC stem cells and those genes after HHEX expression was altered. This led to the identification of four potentially regulated genes-CXL12, BLNK, PAG1, and LPXN. Using StarBase and km-plotter, the negative regulation of HHEX expression and survival trends, including miR-130b, miR-30e, and miR-301b were joined into miRNA-HHEX-mRNA potential regulatory network. The abilities of proliferation, migration and invasion increased in MDA-MB-231 and BT-549 breast cancer cell lines after HHEX down expression and decreased after HHEX overexpression compared them in the control cells. In conclusion, these data suggest that HHEX expression is downregulated in BC and HHEX may regulate the development of BC through the stem cell-related genes.
Collapse
Affiliation(s)
- Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Minying Zheng
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
6
|
Bagheri H, Mosallaei M, Bagherpour B, Khosravi S, Salehi AR, Salehi R. TFPI2 and NDRG4 gene promoter methylation analysis in peripheral blood mononuclear cells are novel epigenetic noninvasive biomarkers for colorectal cancer diagnosis. J Gene Med 2020; 22:e3189. [PMID: 32196834 DOI: 10.1002/jgm.3189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a result of the growing prevalence of colorectal cancer (CRC), new screening and early detection methods are required. Among the novel biomarkers, DNA methylation has emerged as a high-potential diagnosis/screening molecular marker. The present study aimed to assess non-invasive early diagnosis of CRC by examining promoter methylation of TFPI2 and NDRG4 genes in peripheral blood mononuclear cells (PBMCs). METHODS Fifty CRC patients and 50 normal controls were recruited to the present study. Quantitative methylation of the promoter region of the TFPI2 and NDRG4 genes was analyzed in DNA extracted from PBMCs of all cases and control subjects using a methylation-quantification endonuclease-resistant DNA (MethyQESD) method. RESULTS The sensitivity and specificity of the TFPI2 gene for the diagnosis of CRC was 88% and 92%, respectively, and, for the NDRG4 gene, it was 86% and 92%, respectively. The methylation range for the TFPI2 gene was 43.93% and 11.56% in patients and controls, respectively, and, for the NDRG4 gene, it was 38.8% in CRC patients and 12.23% in healthy controls (p < 0.001). In addition, we observed that a higher percentage of methylation was correlated with the higher stage of CRC. CONCLUSIONS The results of the present study reveal that PBMCs are reliable sources of methylation analysis for CRC screening. Furthermore, the TFPI2 and NDRG4 genes provide sufficiently high sensitivity and specificity to be nominated for use in a novel noninvasive CRC screening method in PBMCs.
Collapse
Affiliation(s)
- Hadi Bagheri
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meysam Mosallaei
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Reza Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Gerfa Namayesh Azmayesh (GENAZMA) Science & Research Institute, Isfahan, Iran
| |
Collapse
|
7
|
Singh RD, Shandilya R, Bhargava A, Kumar R, Tiwari R, Chaudhury K, Srivastava RK, Goryacheva IY, Mishra PK. Quantum Dot Based Nano-Biosensors for Detection of Circulating Cell Free miRNAs in Lung Carcinogenesis: From Biology to Clinical Translation. Front Genet 2018; 9:616. [PMID: 30574163 PMCID: PMC6291444 DOI: 10.3389/fgene.2018.00616] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most frequently occurring malignancy and the leading cause of cancer-related death for men in our country. The only recommended screening method is clinic based low-dose computed tomography (also called a low-dose CT scan, or LDCT). However, the effect of LDCT on overall mortality observed in lung cancer patients is not statistically significant. Over-diagnosis, excessive cost, risks associated with radiation exposure, false positive results and delay in the commencement of the treatment procedure questions the use of LDCT as a reliable technique for population-based screening. Therefore, identification of minimal-invasive biomarkers able to detect malignancies at an early stage might be useful to reduce the disease burden. Circulating nucleic acids are emerging as important source of information for several chronic pathologies including lung cancer. Of these, circulating cell free miRNAs are reported to be closely associated with the clinical outcome of lung cancer patients. Smaller size, sequence homology between species, low concentration and stability are some of the major challenges involved in characterization and specific detection of miRNAs. To circumvent these problems, synthesis of a quantum dot based nano-biosensor might assist in sensitive, specific and cost-effective detection of differentially regulated miRNAs. The wide excitation and narrow emission spectra of these nanoparticles result in excellent fluorescent quantum yields with a broader color spectrum which make them ideal bio-entities for fluorescence resonance energy transfer (FRET) based detection for sequential or simultaneous study of multiple targets. In addition, photo-resistance and higher stability of these nanoparticles allows extensive exposure and offer state-of-the art sensitivity for miRNA targeting. A major obstacle for integrating QDs into clinical application is the QD-associated toxicity. However, the use of non-toxic shells along with surface modification not only overcomes the toxicity issues, but also increases the ability of QDs to quickly detect circulating cell free miRNAs in a non-invasive mode. The present review illustrates the importance of circulating miRNAs in lung cancer diagnosis and highlights the translational prospects of developing QD-based nano-biosensor for rapid early disease detection.
Collapse
Affiliation(s)
- Radha D. Singh
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Irina Y. Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|